fmtcount.sty v1.31: Displaying the Values of I{TEX

Counters

Nicola L.C. Talbot

School of Computing Sciences
University of East Anglia
Norwich. NR4 7TJ.

United Kingdom.
http://theoval.cmp.uea.ac.uk/"nlct/

2nd October 2009

Contents

1

1

Introduction

Installation

Available Commands

Package Options

Multilingual Support
Configuration File fmtcount.cfg
LaTeX2HTML style
Acknowledgements

Troubleshooting

Introduction

10

10

10

10

The fmtcount package provides commands to display the values of XTEX counters
in a variety of formats. It also provides equivalent commands for actual numbers
rather than counter names. Limited multilingual support is available. Currently,
there is only support for English, French (including Belgian and Swiss variations),
Spanish, Portuguese, German and Italian.

http://theoval.cmp.uea.ac.uk/~nlct/

\ordinal

\fmtord

\FCordinal

2 Installation

This package is distributed with the files fmtcount.dtx and fmtcount.ins. To
extract the code do:

latex fmtcount.ins

This will create the files fmtcount.sty and fmtcount.perl, along with several
.def files. Place fmtcount.sty and the .def files somewhere where IWTEX will find
them (e.g. texmf/tex/latex/fmtcount/) and place fmtcount.perl somewhere
where BTEX2HTML will find it (e.g. latex2html/styles). Remember to refresh
the TEX database (using texhash or mktexlsr under Linux, for other operating
systems check the manual.)

3 Available Commands

The commands can be divided into two categories: those that take the name of a
counter as the argument, and those that take a number as the argument.

\ordinal{{counter)} [{gender)]

This will print the value of a WTEX counter (counter) as an ordinal, where the
macro

\fmtord{(text)}

is used to format the st, nd, rd, th bit. By default the ordinal is formatted as
a superscript, if the package option level is used, it is level with the text. For
example, if the current section is 3, then \ordinal{section} will produce the
output: 3. Note that the optional argument (gender) occurs at the end. This
argument may only take one of the following values: m (masculine), £ (feminine)
or n (neuter.) If (gender) is omitted, or if the given gender has no meaning in the
current language, m is assumed.

Notes:

1. the memoir class also defines a command called \ordinal which takes a
number as an argument instead of a counter. In order to overcome this
incompatiblity, if you want to use the fmtcount package with the memoir
class you should use \FCordinal to access fmtcount’s version of \ordinal,
and use \ordinal to use memoir’s version of that command.

2. As with all commands which have an optional argument as the last argument,
if the optional argument is omitted, any spaces following the final argument
will be ignored. Whereas, if the optional argument is present, any spaces
following the optional argument won’t be ignored. so \ordinal{section} !
will produce: 3! whereas \ordinal{section}[m] ! will produce: 3" !

\ordinalnum

\numberstring

\Numberstring

\NUMBERstring

\numberstringnum

\Numberstringnum

\NUMBERstringnum

\ordinalstring

\ordinalnum{(n)}[{gender)]

This is like \ordinal but takes an actual number rather than a counter as the
argument. For example: \ordinalnum{3} will produce: 3"9.

\numberstring{(counter)} [{gender)]

This will print the value of (counter) as text. E.g. \numberstring{section}
will produce: three. The optional argument is the same as that for \ordinal.

\Numberstring{(counter)} [{gender)]

This does the same as \numberstring, but with initial letters in uppercase.
For example, \Numberstring{section} will produce: Three.

\NUMBERstring{(counter)} [{gender)]

This does the same as \numberstring, but converts the string to upper case.
Note that \MakeUppercase{\NUMBERstring{(counter)}} doesn’t work, due to the
way that \MakeUppercase expands its argument'.

\numberstringnum{(n)} [(gender)]

\Numberstringnum{(n)} [{gender)]

\NUMBERstringnum{(n)} [{gender)]

Theses macros work like \numberstring, \Numberstring and \NUMBERstring,
respectively, but take an actual number rather than a counter as the argument.
For example: \Numberstringnum{105} will produce: One Hundred and Five.

\ordinalstring{{counter)} [(gender)]

1See all the various postings to comp.text.tex about \MakeUppercase

\Ordinalstring

\ORDINALstring

\ordinalstringnum

\Ordinalstringnum

\ORDINALstringnum

\FMCuse

\storeordinal

This will print the value of (counter) as a textual ordinal. E.g. \ordinalstring{section}
will produce: third. The optional argument is the same as that for \ordinal.

\Ordinalstring{({counter)} [{gender)]

This does the same as \ordinalstring, but with initial letters in uppercase.
For example, \Ordinalstring{section} will produce: Third.

\ORDINALstring{(counter)} [{gender)]

This does the same as \ordinalstring, but with all words in upper case (see
previous note about \MakeUppercase).

\ordinalstringnum{(n)} [{gender)]

\Ordinalstringnum{(n)} [{gender)]

\ORDINALstringnum{(n)} [{gender)]

These macros work like \ordinalstring, \Ordinalstring and \ORDINALstring,
respectively, but take an actual number rather than a counter as the argument.
For example, \ordinalstringnum{3} will produce: third.

As from version 1.09, textual representations can be stored for later use. This
overcomes the problems encountered when you attempt to use one of the above
commands in \edef.

Each of the following commands takes a label as the first argument, the other
arguments are as the analogous commands above. These commands do not display
anything, but store the textual representation. This can later be retrieved using

\FMCuse{(label)}

Note: with \storeordinal and \storeordinalnum, the only bit that doesn’t
get expanded is \fmtord. So, for example, \storeordinalnum{mylabel}{3} will
be stored as 3\relax \fmtord{rd}.

\storeordinal{(label)}{(counter)} [{gender)]

\storeordinalstring

\storeOrdinalstring

\storeORDINALstring

\storenumberstring

\storeNumberstring

\storeNUMBERstring

\storeordinalnum

\storeordinalstringnum

\storeOrdinalstringnum

\storeORDINALstringnum

\storenumberstringnum

\storeNumberstringnum

\storeordinalstring{(label)}{{counter)} [{gender)]

\storeOrdinalstring{(label)}{{counter)} [{gender)]

\storeORDINALstring{(label) }{{counter)} [{gender)]

\storenumberstring{(label)}{{counter)} [{gender)]

\storeNumberstring{(label)}{{counter)} [{gender)]

\storeNUMBERstring{(label)}{{counter)} [{gender)]

\storeordinalnum{(label) }{{number)} [{gender)]

\storeordinalstring{(label)}{(number)} [{gender)]

\storeOrdinalstringnum{(label)}{{number)} [{gender)]

\storeORDINALstringnum{(label) }{{number)} [{gender)]

\storenumberstring{(label) }{{number)} [{gender)]

\storeNumberstring{(label)}{{number)} [{gender)]

\storeNUMBERstringnum

\binary

\padzeroes

\binarynum

\octal

\octalnum

\hexadecimal

\Hexadecimal

\storeNUMBERstring{(label)}{{number)} [{gender)]

\binary{(counter)?}

This will print the value of {counter) as a binary number. E.g. \binary{section}
will produce: 11. The declaration

\padzeroes [(n)]

will ensure numbers are written to (n) digits, padding with zeroes if necessary. E.g.
\padzeroes [8] \binary{section} will produce: 00000011. The default value for
(n) is 17.

\binary{(n)}

This is like \binary but takes an actual number rather than a counter as the
argument. For example: \binarynum{5} will produce: 101.

\octal{(counter)}

This will print the value of (counter) as an octal number. For example, if
you have a counter called, say mycounter, and you set the value to 125, then
\octal{mycounter} will produce: 177. Again, the number will be padded with
zeroes if necessary, depending on whether \padzeroes has been used.

\octalnum{(n)}

This is like \octal but takes an actual number rather than a counter as the
argument. For example: \octalnum{125} will produce: 177.

\hexadecimal{(counter)}

This will print the value of (counter) as a hexadecimal number. Going back
to the counter used in the previous example, \hexadecimal{mycounter} will pro-
duce: 7d. Again, the number will be padded with zeroes if necessary, depending
on whether \padzeroes has been used.

\hexadecimalnum

\Hexadecimalnum

\decimal

\decimalnum

\aaalph

\AAAlph

\aaalphnum

\AAAlphnum

\Hexadecimal{(counter)}

This does the same thing, but uses uppercase characters, e.g. \Hexadecimal{mycounter}
will produce: 7D.

\hexadecimalnum{(n)}

\Hexadecimalnum{(n)}

These are like \hexadecimal and \Hexadecimal but take an actual number
rather than a counter as the argument. For example: \hexadecimalnum{125} will
produce: 7d, and \Hexadecimalnum{125} will produce: 7D.

\decimal{{counter)}

This is similar to \arabic but the number can be padded with zeroes depending
on whether \padzeroes has been used. For example: \padzeroes[8]\decimal{section}
will produce: 00000005.

\decimalnum{(n)}

This is like \decimal but takes an actual number rather than a counter as the
argument. For example: \padzeroes[8]\decimalnum{5} will produce: 00000005.

\aaalph{(counter)}

This will print the value of (counter) as: a b ... z aa bb ... zz etc. For
example, \aaalpha{mycounter} will produce: uuuuu if mycounter is set to 125.

\AAAlph{(counter)}

This does the same thing, but uses uppercase characters, e.g. \AAAlph{mycounter}
will produce: UUUUU.

\aaalphnum{(n)}

\AAAlphnum{(n)}

These macros are like \aaalph and \AAAlph but take an actual number rather
than a counter as the argument. For example: \aaalphnum{125} will produce:
uuuuu, and \AAAlphnum{125} will produce: UUUUU.

\abalph
\abalph{(counter)}
This will print the value of (counter) as: a b ... z aa ab ... az etc. For
example, \abalpha{mycounter} will produce: du if mycounter is set to 125.
\ABAlph
\ABAlph{(counter)}

This does the same thing, but uses uppercase characters, e.g. \ABAlph{mycounter}
will produce: DU.
\abalphnum

\abalphnum{(n)}

\ABAlphnum

\ABAlphnum{(n)}

These macros are like \abalph and \ABAlph but take an actual number rather
than a counter as the argument. For example: \abalphnum{125} will produce:
du, and \ABAlphnum{125} will produce: DU.

4 Package Options

The following options can be passed to this package:
raise make ordinal st,nd,rd,th appear as superscript
level make ordinal st,nd,rd,th appear level with rest of text
These can also be set using the command:
\fmtcountsetoptions

\fmtcountsetoptions{fmtord=(type)}

where (type) is either level or raise.

5 Multilingual Support

Version 1.02 of the fmtcount package now has limited multilingual support. The
following languages are implemented: English, Spanish, Portuguese, French,
French (Swiss) and French (Belgian). German support was added in version 1.1.2
Italian support was added in version 1.31.%

The package checks to see if the command \1@(language) is defined*, and will
load the code for those languages. The commands \ordinal, \ordinalstring
and \numberstring (and their variants) will then be formatted in the currently
selected language.

If the French language is selected, the French (France) version will be used
by default (e.g. soxiante-dix for 70). To select the Swiss or Belgian variants (e.g.
septente for 70) use: \fmtcountsetoptions{french=(dialect)} where (dialect) is
either swiss or belgian. You can also use this command to change the action of
\ordinal. \fmtcountsetoptions{abbrv=true} to produce ordinals of the form
2¢ or \fmtcountsetoptions{abbrv=false} to produce ordinals of the form 2°™¢
(default).

The french and abbrv settings only have an effect if the French language has
been defined.

The male gender for all languages is used by default, however the feminine
or neuter forms can be obtained by passing f or n as an optional argument to
\ordinal, \ordinalnum etc. For example: \numberstring{section}[f]. Note
that the optional argument comes after the compulsory argument. If a gender is
not defined in a given language, the masculine version will be used instead.

Let me know if you find any spelling mistakes (has been known to happen in
English, let alone other languages with which 'm not so familiar.) If you want to
add support for another language, you will need to let me know how to form the
numbers and ordinals from 0 to 99999 in that language for each gender.

6 Configuration File fmtcount.cfg

You can save your preferred default settings to a file called fmtcount.cfg, and
place it on the TEX path. These settings will then be loaded by the fmtcount
package.

Note that if you are using the datetime package, the datetime.cfg config-
uration file will override the fmtcount.cfg configuration file. For example, if
datetime.cfg has the line:

\renewcommand{\fmtord} [1]{\textsuperscript{\underline{#1}}}
and if fmtcount.cfg has the line:
\fmtcountsetoptions{fmtord=level}

then the former definition of \fmtord will take precedence.

2Thanks to K. H. Fricke for supplying the information.
3Thanks to Edoardo Pasca for supplying the information.
4this will be true if you have loaded babel

7 LaTeX2HTML style

The BTEX2HTML style file fmtcount . perl is provided. The following limitations
apply:

e \padzeroes only has an effect in the preamble.

e The configuration file fmtcount.cfg is currently ignored. (This is because
I can’t work out the correct code to do this. If you know how to do this,
please let me know.) You can however do:

\usepackage{fmtcount}
\html{\input{fmtcount.cfg}}

This, I agree, is an unpleasant cludge.

8 Acknowledgements

I would like to thank my mother for the French and Portuguese support and
my Spanish dictionary for the Spanish support. Thank you to K. H. Fricke for
providing me with the German translations and to Edoardo Pasca for providing
me with the Italian translations.

9 Troubleshooting

There is a FAQ available at: http://theoval.cmp.uea.ac.uk/ nlct/latex/
packages/faq/.

10

http://theoval.cmp.uea.ac.uk/~nlct/latex/packages/faq/
http://theoval.cmp.uea.ac.uk/~nlct/latex/packages/faq/

	Introduction
	Installation
	Available Commands
	Package Options
	Multilingual Support
	Configuration File fmtcount.cfg
	LaTeX2HTML style
	Acknowledgements
	Troubleshooting

