DEVLOAD PROJECT.

© 1992, 1993 David Woodhouse.

CONTENTS.

SECTION. TITLE.
Project Writeup.

DOS Function Reference.
Structure of Internal DOS Tables.
DEVLOAD Flowchart.
DEVLOAD Source Code.
NETLIST Source Code.
REDIR Source Code.
REDIRSHW Source Code.
MY SHELL Source Code.
WOMBATS Source Code.
SHOWPARM Source Code.

P
Phoo~NouprwNpe

A.E.B. ‘A’ Level Computing Examination (0643), Summer 1993.

Centre number: 18415. Candidate number: 3205.

PROJECT WRITEUP.

1. Deé€finition of problem.

While | was a student at Norwich City College, | wished to use a copy of Adobe Type Manager on
the College computers, as | was spending a lot of time preparing documents for the Diss Venture
Scout Unit, including the South Norfolk District Scout Newsdetter, which we had taken
responsibility for. ATM is a piece of software, running under Windows, which allows the user to see
text on screen exactly as it will look on the final printout, which makes desktop publishing very
much easier. There was a copy of ATM somewhere on the College network, but | was not allowed
accessto it. | had to bring in my own copy from home, but for copyright reasons, | was not alowed
to leave my copy on the College network drives. | had to find some suitable method of running the
software without breaking the College network rules.

2. Analysisof problem.

The Adobe Type Manager software, along with the fonts | required, occupied a space of roughly
500 Kbytes. | needed this to be accessible at al times when it was in use, as Windows has no
suitable facility for finding missing files, and tends to crash when it encounters such problems.

| could think of three approaches to the problem. All three involved an entire drive being dedicated
to the software. They were:

2.1. Stacker drive.

One possible solution was to have as Stacker drive on the network. This would appear as a single
compressed file unless mounted using the Stacker software, and would not be immediately
recognisable as containing a piece of software.

This was not a suitable solution. Such a volume would have exceeded my data space limitation,
and would not have gone unnoticed by the network managers. Also, the Stacker program comes in
the form of adevice driver, which must usually be loaded at boot time.

2.2. Floppy drive.

My first idea was to put the program onto a floppy disc. This worked, but it meant that | could not
easily use the floppy drive for anything else. If | wanted to access any other floppy disc, | had to be
very careful when | swapped discs, and it was safest to exit Windows to do so, which was time-
consuming and irritating. Because | often worked on files at home, at work and at College, keeping
them on a floppy disc al the time, |1 needed to access floppy discs alot. This solution was not very
suitable, and | only ran ATM when | really needed it, because of the problemsit caused.

2.3. RAM drive.

This seemed like by far the best solution. The workstations | was using were all equipped with
AMb RAM, so installing a 500Kb RAM drive would cause no memory problems. The software could
be copied onto the RAM drive once when the machine was set up, and would remain in place until |
logged off.

The main problem with this solution was again that the RAM drive software was in the form of a
device driver which needed to be loaded at boot time. This is not easy to achieve on a workstation
which does aremote boot from a server over the Ethernet network.

3. Possible solutions.

DEVLOAD PROJECT. David Woodhouse. Page 1.
Project Writeup.

Having decided that a RAM drive was the best way of solving the problem, | was left with two
possible ways of ingtalling it, both of which involved quite a large amount of low-level work. These
were:

3.1. Load RAM driveat boot time.

| asked a network manager about this, and he said it was not possible to do so. To achieve control
of the machine at boot time, | needed to hack into the network, take copies of all the network drivers
and put them all onto my own boot floppy. The difficult part was, of course, the first part.

3.2. Load RAM drive after boot time.

This solution would involve a lot of in-depth knowledge of the internal working of DOS and the
structure of DOS tables. In the absence of any suitable technical reference manual, | would have to
do all my own research, by taking apart DOS code. This involved even more work than the other
possibility.

4. Solution number 1 - L oad at boot time.

The network running on the workstations | was using was RM-NET 3.1. This is MS-NET
compatible, which meant that my technical reference contained details of the DOS function calls
necessary to connect and disconnect network drives.

The first step | took was to write, in C, a program to list the network devices connected to the
system. | soon expanded it to include connection and disconnection of network devices, but it kept
it'sorigina name, NETLI ST. EXE.

Now | had this method of listing connected devices and connecting more, | was more aware of
what was happening within the system. | decided that it was time | found out the passwords for some
of the network drives.

Working on the basis that they had to connected at some point in time by calling the DOS function
to connect network devices, | set up a smple Trojan Horse to take over the DOS function interrupt
(INT 21h). Whenever an INT 21h call was made with the AX register set to 5F02h (the function code
for connecting a network device), the program recorded the drive connected, the shortname and the

password in an internal buffer. The program was written in assembly language, and was called
REDI R. EXE

| originally started by using SYMDEB to examine the program in memory and read the contents of
the buffer, but | soon tired of that and wrote a program to display the copied information
automatically. Thiswas REDI RSHW EXE, and | wrote it in C. For this| had to amend REDI R. EXE
to include a signature, so that REDI RSHW could be sure the Trojan Horse was ingtalled, and a
pointer to the buffer, so that | wouldn’t have to change REDI RSHW EXE every time | changed the
size of the Trojan Horse program.

The Trojan Horse worked perfectly, and soon | had found the shortnames and passwords of drives |
hadn’t previoudy known existed. Every server on the network had a drive named PUBLI C, and they
al had the same password. This applied even to a server they hadn’t told us about, meant for
Computer Services use only. The PUBLI C drive on this contained copies of software not generally
available on the network, for example Excel 4 and Superbase 2. | was encouraged by this discovery,
and continued.

When logging off, the logon program usually just disconnects al network drives and asks for
another user name and password for logon. If a TSR was installed, however, the machine was
automatically rebooted, which meant that my Trojan Horse was lost every time | logged off from the
system, making it difficult to gain access to many drives which | didn’t usually have access to.

DEVLOAD PROJECT. David Woodhouse. Page 2.
Project Writeup.

This problem was soon fixed, however. | used SYMDEB to examine the image of the logon
program, XNETLI ST, in memory, found all the checks performed and by-passed them. The program
then didn’t reboot when | logged off, but left my Trojan Horse running while the next user logged
on. Thiswas the point at which | began to enjoy myself.

When | examined the record of device connections after logging off and then back on again, |
found that a connection had been made to a drive X:, and subsequently disconnected. | immediately
reconnected to this drive and examined it. | found it to contain the version of DOS from which the
machines booted, all the network device drivers, the logon program and also the user database
containing all the passwords on the system. This was exactly what | had been looking for.

| examined the startup procedure carefully, to avoid making any mistakes and causing problems
when | made my boot floppy.

The stations boot from the closest server on the network. and immediately connect drive X: to the
network boot drive. A copy of CONFI G SYS is then executed, depending on the type of the
workstation. This loads all the device drivers necessary for normal operation of DOS and the
network. NET. EXE isthen called as the DOS shell. This connects a hetwork session and then passes
control to XNETLI ST. COM which is basically aloop which does the following:

Connect drive X:

Run XNETLI ST. EXE (see below.)
Disconnect al drives, rebooting if can’t
Reboot if INT 21h vector changed.

Reboot if amount of free memory has changed.
Various other checks, rebooting if changes.
Loop to part 1.

Noohs~wNE

XNETLI ST. EXE is the program which handles to logon procedure, by asking for a user name and
password and looking them up in the user database. If they are correct, the necessary network drives
are connected and a copy of COVMAND. COMis invoked.

Once | was sure of the boot procedure and was confident that | could make a network boot floppy
without making any mistakes that might disrupt the network, | copied all the network drivers to a
DOS 5 boot disc along with the CONFI G. SYS file for the workstations | was using, and attempted
to boot from my own floppy, This worked fine with an exact copy of the CONFI G. SYS, so | added
aRAM drive, and was delighted to find that | had solved the problem.

| soon cut out the network security programs from the boot procedure, after first examining them to
ensure there would be no adverse effects caused by their removal.

My next step was to by-pass the normal logon procedure. | got bored of typing my name and
password, so | wrote MYSHELL. EXE in C to log on automatically. This connected me to both my
own user space and the Student Union user space, in which | occasionally had to work

The only problem with this was that many of the shortnames and passwords were eight-digit
random number which were changed every week. About once a week, | had to log on normally and
catch all the shortnames and passwords again. This only took a couple of minutes, though, and so |
didn’t go back to the normal logon program.

A more important problem with my solution was that al the workstations were set up to remote
boot from the network, and only attempt to boot from a floppy disc if the network was not available.
This meant that | had to unplug my machine from the network every time | booted it. |1 had,
however, seen that the network managers possessed boot discs which the machines booted from in

DEVLOAD PROJECT. David Woodhouse. Page 3.
Project Writeup.

preference to the network. The discs obviously contained a signature, probably in the boot sector,
marking them as having priority over a network boot. The machines always checked the floppy drive
for this signature before booting from the network.

In order to find out exactly what this signature was, | took home a complete copy of the machine's
ROM BIOS and started to go through the INT 19h procedure, which is the ROM bootstrap.

Before | completed this, however, | encountered another obstacle. | was asked by the network
managers to refrain from using my own boot floppy.

| explained exactly what | was using it for, and asked the Development Team Manager about the
possibility of loading device drivers from the command line. He replied that he'd tried it once, but
had given up onit.

Naturaly, | took this as a challenge, and threw myself into solving the my second possible
solution; loading device drivers from the command line.

5. Solution number 2 - Load from command line.

This involved writing a program to install a RAM drive into the DOS internal tables after boot
time. | decided to take it a step further and make it install all device drivers.

6. Program requirements.

Before | could write a program to install device drivers, | first had to work out how it was done.
My main problem was that | had no knowledge of the internal DOS tables into which | had to enter
al the drive statistics. | was aware that the procedure for loading a device driver went as follows:
Load driver file into memory.

Passthedriver an | NI TI ALI SE command.

Examine the amount of memory the driver requires to stay in memory.

If thisis zero, exit. The driver has completed it’ s task and does not need to stay resident.
Allocate the correct amount of memory to the driver.

Link the driver into the device driver chain.

If itisablock device, install al the blocksinto the relevant internal tables.

Noohs~wNE

Steps 1-5 are simple operations, the information and procedures necessary being available in any
semi-decent technical reference for DOS.

Step 6 involves the use of an undocumented DOS function, function 52h. This gets a pointer to a
DOS table ‘invar’. Each device driver started with a DWord pointer to the next device driver in the
chain. Thefirst device in the chain isthe NUL device, which islocated at invar + 0022h. To link the
new driver into the chain, the NUL device must be changed to point to the new device, and the new
device must be made to point to where NUL used to point to. This installs the driver in the same
placein the chain asif it had been installed in CONFI G. SYS.

At this point, | had no idea about how to implement step 7, so | concentrated on getting the rest to
work. Thiswas enough to install character devices.

| started by doing it all by hand in SYMDEB, and once | was sure of the procedure, | wrote the first
version of DEVLQOAD. As can be seen from the alteration ligt, it was very primitive. | soon made
many changes to improve the functionality and user-friendliness of the program, al of which are
listed in the source code.

At this point, | wrote SHOAPARM SYS to display exactly the command line passed to the driver by
DOS. This showed that when no parameters are given to a device driver, DOS inserts a space after

DEVLOAD PROJECT. David Woodhouse. Page 4.
Project Writeup.

the filename. DOS also converts the whole of the command line to upper case. For compatibility, |
made DEVL QAD do the same. in version 2.1.

Once | had cleaned up the program to a reasonable extent, | decided that it was time to include
block devices.

At this point , | was stuck. | had no idea of how to continue, so | was forced resort to the age-old
principle ‘If you don’'t know what you're doing, copy someone else.’ | realised that there was
already a section of code in the system that installed blocks into the internal tables. It is part of the
SYSI NI T module, the section of code which sets up DOS immediately after booting and is
responsible, among other things, for the parsing of CONFI G. SYS and the loading of device drivers.

| wrote adevice driver, caling it WOMBATS. SYS in the absence of any better ideas, which grabbed
the entire SYSI NI T module from it’s location in high memory into a buffer and reported the return
address (the address which the driver was invoked from.) This allowed me to examine the SYSI NI T
code at my own leisure. After a couple of days inspecting the SYSI NI T code, | managed to
complete my list of what step 7 in my original flowchart actually entailed:

7.1. Check sector size against maximum in system.

7.2. lttoolarge, don'tinstall driver.

7.3. Check LASTDRIVE array. Don't install if the array is not large enough to fit another drive.

7.4. Insert validity flag and pointer to block header into LASTDRIVE array.

7.5. Create new block header for drive.

The first four steps were easy enough to implement, but step five was partially done by another
undocumented DOS function, number 53h. This is used to expand the BPB returned by the device
driver into the block header. Step 7.5 was as follows:

7.5.1. Allocate enough memory for the new block header.

7.5.2 Insert the absolute block number, the block number in the device, and the pointer to the
devicedriver.

7.5.3.Link the new block header into the chain by making the one that was previoudly at the end of
the chain point to it and setting the offset of the pointer in the new one to OFFFFh, signalling the end
of the chain.

7.5.4.Use function 53h to insert the rest of the data into the block header.

I now had a complete flowchart, at least at a greatly smplified level, for the installation of device
drivers. | proceeded to update DEVLOAD to version 2.0, including block device ingtallation. Again, it
was primitive to start with, but | soon updated the program as and when | realised what could be
doneto improveit.

Because the program started off as a test for an idea and developed from there, there was no
flowchart and program plan, but it evolved as it went. When | started to write it, | had no idea of the
problems | would encounter, so attempting to write a program plan and flowchart would have been
totally pointless.

Asit was, the program stayed reasonably well-structured, in spite of the continual aterations. Even
s0, | decided to write out a flowchart, including a few new ideas, and do a complete rewrite, putting
itin .EXE format and calling it version 3.0.

Thiswas fine in theory, but almost as soon as | had finished the rewrite, | finally managed to work
out how to relocate the PSP and save the 60h bytes of memory below the driver that | had always
before had to leave for the PSP. Having done this at last, after about a year, on and off, of

DEVLOAD PROJECT. David Woodhouse. Page 5.
Project Writeup.

experimenting, | made many changes to the memory allocation procedure, as can be seen in the
alteration list for version 3.0.

Having never found a device driver file containing two drivers with blocks to ingtall, | had a few
bugs in the install procedure for block devices which had never shown up. | put together two copies
of DRI VER. SYS into asinglefile, and this highlighted afew problems which | also fixed..

The only other change which | made after writing version 3.0 was to move the main program entry
point to a location above LASTBYTE. This results in absolutely no change to the program code, it
just means that the code which has already been executed and is no longer required is not rel ocated
to the top of memory.

Thefinal flowchart for DEVLOAD. EXE isincluded after the appendices.

7. Testing.

The program has largely been tested as it was developed, with bugs being fixed as they came up.
Usually, each time | got the program working properly or added a new function, | discovered more
bugs which needed to be fixed, or at least | had new ideas about what | could make it do next.

The following is a demonstration of DEVLOAD being used to load an expanded memory driver.
The memory map function, MEM EXE, is called both before and after loading EMM SYS to confirm
the addition of the expanded memory function. DEVI CES. COMis called last to show the position of
EMM SYS in the device chain.

C.\ >nem

655360 bytes total conventional mnenory
655360 bytes avail able to | BM DCS
495072 | argest executabl e program size

C\ >devload /v enm sys
DEVLOAD. EXE v3.0 (O 1992, 1993 David Wodhouse.
Loads device drivers fromthe conmand |i ne.

Fi | enane : C. \ MBDOS\ EMM SYS
Load address : 2718: 0000

Expanded Menory Manager Version 4.0S
Size = 384 KB, Page Frame = D000
Port(s) = 0208 0258

Init function return status : 0100
1 character device installed.

Si ze of driver (paragraphs) : 021A
Interrupt vectors changed : 67h
Driver staying resident.

C\ >npem
655360 bytes total conventional nenory

655360 bytes avail able to | BM DCS
486448 | argest executabl e program si ze

DEVLOAD PROJECT. David Woodhouse. Page 6.
Project Writeup.

393216 bytes total EMS nenory
393216 bytes free EMS nenory

C:\ >devi ces

DEVI CES. COM v2.2 (C 1991, 1992 Davi d Wodhouse.
Lists drivers in DCS device chain.

Tabl e invar | ocated at 011C:. 0026

Devi ce Attr. Str. Int. Addr ess .SYS file
NUL 8004 O0DC6 O0ODCC 011C: 0048

EMUWXXX0 8000 0016 0023 2718:0000 EW

Bl ock: 03 0002 0039 O004F 1C10:0000 NETUN TS

Bl ock: 02 4842 0126 0131 0B61:0000 STACKER

CON 8013 06F5 0700 0070:0023
AUX 8000 06F5 0721 0070:0035
PRN AOCD O06F5 0705 0070:0047

CLOCKS 8008 06F5 0739 0070:0059
Bl ock: 04 08C2 O06F5 073E 0070:006B

CcoML 8000 O06F5 0721 0070:007B
LPT1 AOCO 06F5 070C 0070: 008D
LPT2 AOCO 06F5 0713 0070: 009F
LPT3 AOCO 06F5 071A 0070:00B8
cowve 8000 O06F5 0727 0070: 00CA
covs 8000 O06F5 072D 0070:00DC
cov4 8000 O06F5 0733 0070: 00EE
c\ >

| have no character device driversthat could easily be demonstrated. | have tested ANSI . SYS and
found it to work when loaded by DEVLQAD, but cannot easily show screen dumps of this. The next
example is of DEVLOAD being used to load the SuperStor compression software which | use to
compress my hard drive. The VOL command is used to show the absence and later the presence of
the specified drive. Whenever | install either SuperStor or Stacker on any system, | always keep a
copy of DEVLOAD in the uncompressed part of the drive, for loading the compression device driver
after booting from afloppy disc.

C\ >vol d:
Invalid drive specification
C.\ >devload /v sstordrv. sys

DEVLQAD. EXE v3.0 (O 1992, 1993 David Wodhouse.
Loads device drivers fromthe command |i ne.

Fi | enane : C\ SSTORDRV. SYS
Load address : 171B: 0000

Super Stor Data Conpression Driver (DRI) 1.06
Copyright (C AddStor Inc. 1991. Al rights reserved.

Bl ock header for drive D at 21EA: 0000
Init function return status : 0100

Last drive in use : D

DEVLOAD PROJECT. David Woodhouse. Page 7.
Project Writeup.

Last drive avail. : Z

1 bl ock install ed.

Si ze of driver (paragraphs) : O0AD2
Interrupt vectors changed . 21h, 26h.
Driver staying resident.

C\ >vol d:

Volunme in drive Dis SuperStor

c\ >

The last example presented here is DEVLQOAD attempting to load a block device driver when the
LASTDRIVE array is aready full. This demonstrates how it asks whether to terminate installation.

C.\ >devload /v driver.sys /d:2

DEVLQAD. EXE v3.0 (O 1992, 1993 David Wodhouse.
Loads device drivers fromthe command |i ne.

Fi | enane : C:\ MBDOS\ DRI VER. SYS
Load address : 2E32: 0000

Loaded External Disk Driver for Drive K

Init function return status : 0103
1 bl ock(s) not installed - LASTDRI VE= paraneter in CONFI G SYS too snall.

No bl ocks or INTs installed - termnate (YN ?vy
Si ze of driver (paragraphs) : 0000

c\ >

8. Documentation.

User documentation is included within the program. The usage is very simple, and the standard
help command (‘DEVLOAD / ?’) will display the available options. Even if DEVLQAD is invoked
with no arguments, it will tell the user how to get help.

There is little need for extensive system documentation in this program.. Any person editing this
program must, because of it’s nature, have an extensive knowledge of 8086 assembly language and
the DOS operating system. To anyone with this capability, much of the program will be self-
explanatory, and only rudimentary comments in the source code are necessary. However, | have
included more documentation than | would usually provide, both because this is performing complex
tasks in machine code and it is easy to lose track of register usage, and because | know it is intended
to be examined by other people than just myself.

9. Critical appraisal.

| have had many criticisms of the operation of the program, but over the past year | have fixed just
about al of them. There are still changes | would like to make, and probably will in the near future
when | have completed enough research to make them possible. | have worked out how to

DEVLOAD PROJECT. David Woodhouse. Page 8.
Project Writeup.

implement support for SETVER. EXE, and am waiting for MS-DOS 6 to arrive so that | can check
it's compatibility before another update. | have also worked out how to change the size of the
LASTDRIVE array in DOS 4 and higher. This| will incorporate soon as well.

Loading device drivers into UMBs will involve a lot more experimenting and probably
examination of SYSI NI T, so will probably not happen in the near future. I'll get round to it,
though, and by then I’ll have come up with something else to add or change. | might end up trying to
get it to load devices once Windows is running, and make them available to all programs under
Windows. That’ d keep me amused for awhile.

DEVLOAD PROJECT. David Woodhouse. Page 9.
Project Writeup.

APPENDIX 1 - DOS FUNCTION REFERENCE.

The DOS function call isINT 21h. The function number is passed in the AH register. This appendix
lists all the DOS functions used in any of the programs included with this project.
Function 02h - Character output.

IN: DL ASCII character to print.
OUT: Nothing.

Prints the character in DL to the standard output device (usually CON: if not redirected.)

Function 08h - Character input without echo.

IN: Nothing.
OUT: AL Character from device.

Gets the next character from the standard input device (usually CON: if not redirected.)

Function 09h - Output character string.

IN: DS: DX --> ASCII$ string to print.
OUT: Nothing.

Prints the dollar-terminated string to the standard output device.

Function 25h - Set INT vector.

IN: AL INT number.
DS: DX INT vector.
OUT: Nothing.

Sets the specified interrupt vector to the value held in DS: DX.

Function 30h - Get version number.

IN: Nothing.
OuUT: AL Major version number.
AH Minor version number.

Used to return the current DOS version number.
NOTE: DOSversion 1 returnszeroin AL.

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 1 - DOS Function Reference.

Function 31h - Terminate and stay resident (T SR).

IN: AL Program return code.
DX Memory to reserve in paragraphs.
OUT: Nothing.

Terminate program but remain in memory using DX paragraphs.

Function 35h - Get INT vector.

IN: AL INT number.
OUT: ES: BX INT vector.

Sets ES: BX to the value of the specified interrupt vector.

Function 37h - Get / set switch character (undocumented.)

IN: AL 00h Get switch character.
01h Set switch character.

DL Switch character if AL=01h

OUT: DL Switch character if AL=00h

Gets or sets the current character to be used as a switch on the command line (usually ’/’.)

Function 43h - Get / set file attributes.

IN: AL 00h Get file attributes.
01h Setfileattributes.
CX New attribute if AL=01.
DS: DX --> ASCIIZ filename.
OuUT: X File attribute if getting attribute.
AX Error code if error.

CARRY Setif error.

Gets or sets attributes for the file whose name is pointed to by DS: DX. Can be used to check for
file's existence.

Function 48h - Allocate memory.

IN: BX Number of paragraphs required.
OuUT: AX Segment of block if successful.
Error code if error.
BX Size of largest available block if error.

CARRY Setif error.

Attempts to allocate memory to the current procedure.

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 1 - DOS Function Reference.

Function 49h - Release memory.

IN: ES Segment of block to be released.
OUT: AX Error codeif error.
CARRY Setif error.

Attempts to rel ease the memory block pointed to by ES back to the main pool.

Function 4Ah - Modify memory allocation.

IN: ES Segment of block to be modified.
BX New sizein paragraphs.
OUT: AX Error code if error.
BX Size of largest available block if error.

CARRY Setif error.

Attempts to change the size of the specified memory block to the length in BX.

Function 4Bh - Execute program.

IN: AL 00h Load and execute program.
03h Load overlay.
DS: DX --> ASCIIZ filename.
ES: BX -->Parameter block.
For AL=03h, parameter block consists of:
+00 Word Segment addressto load overlay.
+02 Word Relocation factor.

L oads program into memory and then executes if AL=00h.

Function 4Ch - Terminate with return code.

IN: AL Program return code.
OUT: Nothing.

Terminate program and return code in AL to parent.

Function 50h - Set current PSP (undocumented.)
IN: BX Segment address of new PSP.

Sets the current PSP to the one specified in BX.

Function 52h - Get ‘invar’ pointer (undocumented.)

IN: Nothing.
OUT: ES: BX -->Invar.

Gets pointer to DOS table ‘invar’. See Appendix 2 for details.

DEVLOAD PROJECT. David Woodhouse.
Appendix 1 - DOS Function Reference.

Page 3.

Function 53h - Expand BPB to block header (undocumented.)

IN: DS: Sl --> BPB to expand.
ES: BP -->Block header to fill in.
OUT: Nothing.

Fillsin block header with information from BPB.

Function 55h - Create child PSP (undocumented.)

IN: DX Segment address of new PSP.

S Vaueto put in new PSP:0002 (top of mem segment.)
OUT: Nothing.

Creates achild PSP at the address specified.

Function 58h - Get / set allocation strategy.

IN: AL 00h Get strategy.
0lh Set strategy.

BX New strategy code if AL=01h.
OuUT: AX Strategy codeif AL was 00h
Strategy codes:

0000 - First fit.

0001 - Best fit.

0002 - Last fit.

Gets or sets memory allocation strategy for subsequent memory requests.

Function 5Eh, subfunction 00h - Get machine name.

IN: AL 00h
DS: DX --> Buffer to receive string.
OUT: AX Error code if error.
CH 00h if name not defined.
>00h if name defined.
CL NETBIOS name number if CH>0

CARRY Setif error.

Gets machine name (MS-NET only.)

DEVLOAD PROJECT. David Woodhouse. Page 4.
Appendix 1 - DOS Function Reference.

Function 5Fh, subfunction 02h - Get redirection list entry.

IN: AL
BX
DS: Sl
ES: DI
OUT: CARRY
AX
If not error:
BH

BL

CX
DX, BP

02h

Redirection list index.

--> Buffer to receive 16-byte device name.
--> Buffer to receive 128-byte shorthame.
Set if error.

Error code if error.

Device status flag.

bit0 O devicevalid.
1 deviceinvalid.

Device type.

03h Printer.

04h Drive.

Stored parameter value.

Destroyed.

Gets entry number BX in the list of redirections.

Function 5Fh, subfunction 03h - Redirect device.

IN: AL
BL

CX

DS: S

ES: DI
OUT: CARRY

AX

03h

Device type.
03h Printer.
04h Drive.

Parameter to save for caller.
--> ASCIIZ local device name.

--> ASCIIZ shortname followed by ASCIIZ password.

Set if error.
Error codeif error.

Attempt to connect device to network shortname, using given password.

Function 5Fh, subfunction 04h - Cancel redir ection.

IN: AL
bS: S
OUT: CARRY
AX

04h

--> ASCIIZ local device name.
Set if error.

Error code if error.

Disconnect device from network.

DEVLOAD PROJECT.

David Woodhouse.
Appendix 1 - DOS Function Reference.

Page 5.

Function 60h - Expand filename.

IN: DS: Sl --> Source pathname.

ES: DI --> Buffer to hold destination pathname.
OUT: CARRY Setif error.

AX Error code if error.

Gives true pathname, taking into account current drive and directory. Gives error if goes above root
(i.e.toomany ‘\ . .\")

Function 62h - Get current PSP.

IN: Nothing.
OuUT: BX Segment address of current PSP.

Gets the segment address of the PSP of the current process.

DEVLOAD PROJECT. David Woodhouse. Page 6.
Appendix 1 - DOS Function Reference.

APPENDIX 2 - STRUCTURE OF INTERNAL DOS TABLES.

Invar.

Offset Size ltem
-02h Word Segment of first memory arena header.
00h DWord --> First block header.
04h DWord --> FILES array.
08h DWord --> CLOCKS$ driver.
0Ch DWord --> CON driver.
10h Word Max. bytes per sector.
12h DWord --> First disk buffer.
16h DWord --> LASTDRIVE array.
1Ah DWord --> FCB table.
1Eh Word Size of FCB table.
20h Byte No. of block devices.
21h Byte LASTDRIVE value.
22h NUL device starts here.

Device Driver.

Offset Size ltem
00h DWord --> Next driver in chain (X:FFFF means end.)
04h Word Device attributes.
06h Word Device strategy routine offset.
08h Word Device interrupt routine offset.
0Ah 8 Bytes Device name padded with spaces.

Bios Parameter Block (BPB.)

Offset Size ltem
00h Word Bytes per sector.
02h Byte Sectors per cluster.
03h Word Reserved sectors.
05h Byte Number of FATSs.
06h Word Max. root directory entries.
08h Word Total number of sectors.
0Ah Byte M edia descriptor byte.
0Bh Word Sectors per FAT.

DEVLOAD PROJECT.

David Woodhouse.

Appendix 2 - Structure Of DOS Internal Tables.

Page 1.

Block Header.

Offset Size ltem

00h Byte Absolute block number.

01h Byte Block number in device.

02h Word Bytes per sector.

04h Byte Sectors per cluster - 1.

05h Byte Cluster to sector shift (how far to shift left bytes/sector
to get bytes/cluster.)

06h Word Number of reserved sectors.

08h Byte Number of FATSs.

0%h Word Number of root directory entries.

0Bh Word Sector no. of first data.

0ODh Word No. of clusters + 1.

OFh Word Sectors per FAT.

NOTE: This is a single byte in DOS 3, so all offsets
from here onwards must have one subtracted from them.

11h Word First sector of root directory.
13h DWord --> Device driver for this block.
17h Byte M edia descriptor byte.
18h Byte OFFh means must rebuild.
19h DWord --> Next block header in chain (X:FFFF means end.)
1Dh Word ?
1Fh Byte ?
20h Byte ?
Arena Header.
Offset Size ltem
00h Byte 'Z' if last block, else’M’.
01h Word Segment owner.
03h Word Segment size.
05h 3 Bytes Unused.
08h 8 Bytes Owner name (if self owned.) Terminated with NULL
byte if less than eight characters.

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 2 - Structure Of DOS Internal Tables.

Program Segment Prefix (PSP.)

Offset Size ltem
00h Word Program exit point (INT 20h.)
02h Word Memory size in paragraphs.
04h Byte Unused.
05h 5 Bytes Far call to DOS function handler.
O0Ah DWord OId INT 22h vector.
OEh DWord Old INT 23h vector.
12h DWord Old INT 24h vector.
16h Word Parent PSP segment.
18h 14h Bytes Open files (OFFh = unused.)
2Ch Word Environment segment.
2Eh DWord Far ptr to SS:SP.
32h Word Max. open files.
34h DWord --> Open files table (usually PSP:0018h.)
38h 8 Bytes ?
40h Word Version number reported to this process (DOS 5+.)
42h OEhBytes | ?
50h 3 Bytes DOS function dispatcher (INT 21h, RETF.)
53h Word Unused.
55h FCB #1 extension.
5Ch FCB #1.
6Ch FCB #2.
80h 80h Bytes Command line tail.

DEVLOAD PROJECT.

Appendix 2 - Structure Of DOS Internal Tables.

David Woodhouse.

Page 3.

APPENDIX 3 - DEVLOAD FLOWCHART.

1. Initialisation.

1.1.
1.2
13
14.

Set up segment registers.
Get PSP segment.

. Printinitial message.
Check DOS version.

2. Check command line.

21
2.2.
2.3.
2.4.
2.5.

If no parametersgiven, print error and exit.
Deal with switches.
Sear ch for fileusing PATH if no path specified.
If filenot found, print error and exit.
Expand filenameto full pathname using func. 60h.

3. Relocate.

3.1
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.

Get allocation strategy.

Reduce main allocation to minimum.

Set allocation strategy to highest fit.

Request chunk at top of memory for PSP, program and stack.
Reset allocation strategy to old value.

Move PSP to top of memory.

M ove program to top of memory.

Give owner ship of top of memory segment to itself.
Change stack to top of memory.

Maketop PSP current.

Transfer execution to top of memory.

4. Allocate lower segment of memory.

4.1.
4.2.
4.3.
4.4,
4.5.

Change stored PSPSeg.
Release old PSPSeg.
Release old environment.
Grab all free memory.
Store DvcSeg.

5. Loaddriver.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

Disable break.

Copy all INT vectors.

Par se command line.

Print filename.

Load driver using func. 4Bh
Print load address.

DEVLOAD PROJECT. David Woodhouse.

Appendix 3 - Devlioad Flowchart.

Page 1.

5.7. Getinvar pointer.
5.8. Get max sector size.
5.9. Get LASTDRIVE, LastDrUsed.

6. Executedriver.

6.1. Set DS:Sl --> DvcSeg: 0000.

6.2. Set ES:BX --> device after NUL.

6.3. InstallDevice until no more left.

6.4. Print LASTDRIVE error if necessary.

7. Clear up.

7.1 . Calculatesizeof driver to keep.
7.2. Offer abort if nothing installed.

7.3. Print LASTDRIVE and LastDrUsed.
7.4. Print number of devicesinstalled.
7.5. Insert new LastDrUsed intoinvar.
7.6. Printdriver keep size.

7.7. |If keep sizeiszero, exit.

7.8. Allocatedriver memory required.
7.9. Print INT vectorschanged.

7.10. Link from NUL device.

7.11. Put ownership and device nameinto driver’sarena header.
7.12. Exit program.

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 3 - Devlioad Flowchart.

INSTALLDEVICE ROUTINE.

1. Storedriver addresses.

2. Print CrLf.

3. Makerequest header.

3.1
3.2.
3.3.
3.4.
3.5.

Insert next block number.

Insert ‘INIT’ command.

Insert default break address = DvcSeg: 0000.
Insert default no blocksin device.

Insert ptr to command line tail.

Call deviceroutines.

5. If character device, increase count of said.

6. Check driver length.

6.1.
6.2.
6.3.

Get driver length.
If grown and blocks already installed, error.
Elseif grown and blocks not installed, store new value.

7. Install blocks.

7.1,
7.2.
7.3.
7.4,
7.5.
7.6.
1.7.
7.8.
7.9

7.10.
7.11.
7.12.
7.13.
7.14.
7.15.
7.16.
7.17.
7.18.

Check number of unitsin driver.

If none, goto 8.

Zero block number count in this device.

ES:BP --> new block header.

DS:BX --> BPB pointer array.

DS:Sl --> next BPB from pointer array.

Check sector size.

Check LASTDRIVE.

Store abs. block number, block number in device.
Make last block header in chain point to the new one.
Change pointer to ChainEnd.

Print new block header address.

Fill in LASTDRIVE array.

Finish filling in block header.

Expand BPB to block header using func. 53h.
Increase ES:BP by size of block header.

I ncrease BlocksDone.

If blocksleft in this device, loop to 7.6.

DEVLOAD PROJECT. David Woodhouse.

Appendix 3 - Devlioad Flowchart.

Page 3.

7.19. Print INIT return status.

8. Linkdriver.

8.1. Push address of next in file.

8.2. Point new driver toold driver.

8.3. Pop address of next in file.

8.4. Convert segment if necessary.

8.5. Set ZERO flag on whether last in file.
8.6. RETURN.

DEVLOAD PROJECT. David Woodhouse. Page 4.
Appendix 3 - Devlioad Flowchart.

APPENDIX 4 - DEVL OAD SOURCE CODE.

TI TLE DEVLOAD to load device drivers fromconmmand |ine.
FORMAT EXE
VERSI ON 3.0
CODE 80x86
OPTI ONS / ML
TI ME CHECK
DATE 12/3/92 - 21/4/93
AUTHOR Davi d Whodhouse
(C) 1992, 1993 Davi d Whodhouse.

; EXPLANATI ON. .

: Ver si on

The program first relocates itself to the top of the avail abl e nenory
and then |oads the driver belowitself. If the driver |oads happily, it
is then executed. If it asks for menory to be reserved for it, It is
linked into the device chains and the program TSRs keeping the required
amount of nmenory, otherwi se a normal exit occurs.

1.0 12/ 3/ 92
Basics, not user-friendly, only supports character devices so far
13/ 2/ 92
Change to using EXEC (4Bh) function to load - now |l oads . EXE files
Take length to TSR from device return, not file |ength.
Don't TSR if not required.

:Version 1.1 17/ 3/ 92

Ver si on

Conplete rewite of initialisation routine.

Al'l ows for nore than one device per file.

Hel p message added.

EXEC failure now explains error codes, rather than just giving no.
19/ 3/ 92

Print error nmessage and exit if version < 4.

Loads device at PSP+6, not PSP+10h (overlay FCBs and command tail).

Stack noved down by 8 paras, not truncated to 80h bytes.
20/ 3/ 92

Rel ease environnent bl ock before TSR

2.0 21/ 3/ 92
Use I NT 21h, function 53h. Can now | oad bl ock devi ces.
Use segnent in break address, don't assune sanme as driver segnent.
Ask whether to terminate if can't install any bl ocks.
Di sabl e ctrl-break
22/ 3192
Check sector size before installing block devices.
Di sable break with INT 1Bh, as well as INT 23h - stops ~C appearing.
(taken out in v2.1) - causes problenms if driver changes it.
Don't use INT 10h - all output via INT 21h - can be redirected.
Print drive letter with bl ock header address.
Print LastDrive nmessage after installing block headers, not before.
Change program nane in arena header to device filenanme (for MEM EXE)
Support for DOS 3 added (now works with at | east DOS 3.1 onwards).
Print driver's |oad address.

:Version 2.1 24/ 3/ 92

; Bug fix - drivers requesting nenory offset FFF1 - FFFF now works OK

; 25/ 3/ 92

DEVLOAD PROJECT. David Woodhouse. Page 1.

Appendix 4 - DEVLOAD Source Code.

Now uses func 60h to expand fil ename before printing it.

Di spl ay | NT vectors changed by driver.
26/ 3/ 92

Al so adds space after filename if no paraneters given
Change data at end to ?? rather than 00 - smaller .COMfile.

:Version 2.2 26/ 10/ 92

; When no bl ocks installed, checks whether INT vectors changed before
; asking whether to terminate. Still not fool proof, but better

; Cosnetic fix - °$ now cones after CRILF on “None.' for INT vectors.

Bug fix - Check all INT vectors (200h words, not 200 words!)

Version 3.0 11/ 4/93 - 20/ 4/93
Conplete rewite fromscratch.
Only relocate if going to try EXEC - saves |osing F3.
Use path to find driver if not in specified directory.
Convert to .EXE program
Rel ocate PSP to top of nmenory as well as code and stack
Rel ease environment before requesting nmenory for driver

Use highest nmenory required return
Link drivers in correct order.
Add /Q (qui et node) option
Di sperse conments ad nauseum
21/ 4/ 93
Add /V (verbose npde) option
Move | astdrive report to end.
Move abort request to end.
Add count of character devices installed.
Put entry point after LASTBYTE - snaller relocated code

Load into Upper Menory Bl ocks (like 'DEVICEH GH=".)
Work frombatch files |ike CONFIG SYS.

Change size of LASTDRIVE array by reallocating.

Add support for SETVER. EXE

L DEFI NES.
STACKLEN equ 200h

SMALLESTDRI VER equ 100h

Qui et Fl ag equ 80h

Ver boseFl ag equ 40h

Aut oFl ag equ 20h

e CODE (at last).
CSeg segment public byte ' CODE'

org 0

assume cs: CSeg, ds:CSeg, es:CSeg

; DS: TopCSeg, ES: TopPSPSeg

; Get old PSP segnment, store new PSP segnent.

Bug fix - changing INT 1B | ost vector if driver altered it, so don't.

Converts parans to upper case before passing to driver, |ike DOS does.

Don't even attenpt to load driver if not enough menory avail abl e.

rel ocat ed: push es
nmov es, PSPSeg
pop PSPSeg
DEVLOAD PROJECT. David Woodhouse. Page 2.

Appendix 4 - DEVLOAD Source Code.

; Push segnment of environnent.
; DS: TopCSeg, ES: PSPSeg
push es: [002Ch]

; Rel ease ol d PSP segnent.

nov ah, 49h
i nt 21h
jnc r el PSPok

;Failed to rel ease PSP - print error.

nov dx, of f set Rel PSPErr Msg
cal l PrintError

nov ah, 9

i nt 21h

nov dx, of f set CrLfMsg

nov ah, 9

i nt 21h

; Rel ease envi ronment segnent.

; DS: TopCSeg, ES: CSeg

r el PSPok: pop es
nov ah, 49h
i nt 21h
jnc rel envok

;Failed to rel ease environnent - print error

nov dx, of f set Rel EnvErr Msg
cal l PrintError
nov ah, 9
i nt 21h
nov dx, of f set CrLfMsg
nov ah, 9
i nt 21h
rel envok: push cs
pop es

; Find out how much nenory is available by asking for stupid anmounts.

nov ah, 48h
nov bx, OFFFFh
i nt 21h
;1n M5-DCS version 6 and below, this will always fail, but check
;the return status just in case it does give what we asked for
jnc gr abl owok
; BX now hol ds the maxi num anount of nmenory avail abl e.
;Don't install if less than 4K bytes avail abl e.
cnp bx, SMALLESTDRI VER
ja si zeok
nov bx, SMALLESTDRI VER

;Attenpt to grab nmenory for driver

si zeok: nov ah, 48h
i nt 21h
jnc gr abl owok

;Failed to grab menory - print error and exit.

DEVLOAD PROJECT. David Woodhouse. Page 3.
Appendix 4 - DEVLOAD Source Code.

nov dx, of f set GrabLoErrMsg
jmp al | ocerr

; Store segnment of device.

gr abl owok: nov DvcSeg, ax
nov Bl ockSi ze, bx

:Di sable Ctrl - Break.

nov dx, of f set BreakHandl er
nov ax, 2523h
i nt 21h

; Copy interrupt vectors for |ater conparison

; DS: TopCSeg, ES: TopCSeg

xor bx, bx
nov ds, bx
; DS: 0000, ES: TopCSeg
nov si, bx
nov di ,of fset IntVectors
nov cXx, 200h
rep nMoVSWw

; Parse paraneters in same way as SYSIN T does.
nov ds, cs: PSPSeg

; DS: TopPSPSeg, ES: TopCSeg

:Find end of filenane in DI

nov di , cs: NamePt r
add di , cs: NanmeLen

:Find end of command line in BX

nov bl , byte ptr ds:[80h]
add bx, 81h

; Conpare them

cnp bx, d
ja par nsgi ven

;1f they are the sane, no paraneters were given, so add a space.

nov byte ptr [di]," '
i nc bx

; Append CrLf to |ine.
par nsgi ven: nov word ptr [bx], OAODh

Print 'Filenamne: if not in Quiet Mde.

push cs

pop ds

t est ModeFl ag, Qui et Fl ag
jnz nopri nt f nanme

nov dx, of f set FNaneMsg
nov ah, 9

i nt 21h

; Make filename ASCII$ instead of ASCIIZ for printing.

DEVLOAD PROJECT. David Woodhouse. Page 4.
Appendix 4 - DEVLOAD Source Code.

nov di , of fset NanmeBuffer

nov dx, d

nov cX, 80h

xor al , al

repnz scasb

dec di

nmov byte ptr [di],'$

s Print filename.

i nt 21h
:Restore to ASCl | Z.

nov byte ptr [di],0
;Print CrLf after filenane.

nov dx, of f set CrLfMsg
i nt 21h

;Load driver file into nmenory.

; DS: TopCSeg, ES: TopCSeg

nopri nt f nane: nov dx, of f set NanmeBuf f er
nov bx, of f set DvcSeg
nov ax, 4B03h
i nt 21h
jnc | oadedok

:Print 'EXEC failure'
nov dx, of f set Not LoadMsg
; Restore error code.
fileerr: pop ax
;Print error nmessage and nunber, get offset of cause in DX
al | ocerr: cal | PrintError
;Print final nmessage.

prexit: nov ah, 9
i nt 21h

; Exi t program

exit: nov ax, 4C00h
i nt 21h

; DS: TopCSeg, ES: TopCSeg
; Check whether to print |oad address.

| oadedok: t est MbdeFl ag, Ver boseFl ag
jz nopri ntl addr

:Print 'Load address:'

nov dx, of f set LoadAddr Msg
nov ah, 9
i nt 21h

; Print segnment of driver.

DEVLOAD PROJECT. David Woodhouse. Page 5.
Appendix 4 - DEVLOAD Source Code.

nmov ax, DvcSeg
cal l PHWOr d

; Print ':0000

nov dx, of f set Col onOMsg
nov ah, 9
i nt 21h

; DS: TopCSeg, ES: TopCSeg

; Get pointer to 'invar'

nopri ntl addr: nov ah, 52h

i nt 21h
:Store for |ater use.

nov | nvar O s, bx
nmov I nvar Seg, es

; DS: TopCSeg, ES: | nvar Seg
:Fetch LastDrUsed and LastDrive from'invar'

nov ax, es: [bx+20h]
nov word ptr LastDrUsed, ax

:Fetch max. sector size from'invar'

nov ax, es: [bx+10h]
nov SecSi ze, ax
push es

pop ds

: Trace device chain from'invar'.
:Point DS: DI to first bl ock header.
nov si, bx

:Point to next bl ock header.

not | ast : | ds si,[si]
;Point to pointer within block header to the next one.
add si,cs:word ptr NextBl HOf s
; Loop while not at the end of the chain.
cnp [si], OFFFFh
jnz not | ast
; Poi nt back at begi nning of |ast block header in chain.
sub si,cs:word ptr NextBl HOf s
:Store for |ater use.
nov cs: Chai nEndOf s, si
nov cs: Chai nEndSeg, ds
; DS: DvcSeg, ES: | nvar Seg
:Point ES:BX to device after NUL device.
| es bx, es: [bx+22h]
DEVLOAD PROJECT. David Woodhouse. Page 6.

Appendix 4 - DEVLOAD Source Code.

; Point DS:SI to new device (DvcSeg: 0000) .

nov ds, cs: DvcSeg
Xor si, si

; DS: DvcSeg, ES: A dDvcSeg
:Install all devices in chain

anot h_dvec: call I nstal | Devi ce
jnz anot h_dvec

; Print LASTDRI VE error nessage if necessary.

push cs

pop ds

cnp [LDr ErrMsg],' O

jz nol drerr

nov dx, of fset LDrErrMsg
nov ah, 9

i nt 21h

; Cal cul ate size of driver to keep

nol drerr: nov ax, Bl HEndOf s
add ax, OFh
rcr ax, 1
nov cl,3
shr ax, cl
add ax, EndSeg
sub ax, DvcSeg

; Store size of driver to keep
push ax

; Check whet her anything installed, offer abortion if not.

nov ax,word ptr Bl ocksDone
or ax, ax
jnz sonedone

; Nothing installed - check whether Auto Mde.

t est ModeFl ag, Aut oFl ag
jnz sonedone

;1f it didn't want to stay anyway, don't ask

pop cX
push CX
j cxz sonedone

; Check whet her any | NT vectors changed.

xor di, di
nov es, d

; DS: TopCSeg, ES: 0000

nov si,of fset IntVectors
nov cx, 200h

rep cnpsw

jnz sonedone

; Nothing installed, so give option of aborting.

DEVLOAD PROJECT. David Woodhouse. Page 7.
Appendix 4 - DEVLOAD Source Code.

nov
nmv
I nt

dx, of f set AskEndMsg

ah, 9
21h

; Get response from keyboard.

nov
badkey: i nt

1f it's an extended character

or
jnz
i nt
jmp

I f it's valid,

real char: cnp
jz

; Response was yes, so set length required to zero

kill: pop
xor
push

110}
110}
: Xor
110}

ah, 8
21h

al, a
real char
21h
badkey

act upon it, else |oop for another.

al,'N
noki |
al,'n'
noki |
al,'yY
kill
al,'y'
badkey

bx

bx, bx

bx

bx, DvcSeg
EndSeg, bx
bx, bx

Bl HEndCf s, bx

;Print the key pressed.

noki l | : nov
nov

i nt

Print CrlLf

nov

nmv
I nt

:Print Lastdrive and LastDrUsed if bl ocks done and Ver bose Mbde.

sonedone: push
pop

t est
jz
t est
jz
nov

nov
nov

add
add

ah, 02h
dl,a
21h

af t erwards

dx, of f set CrLfMsg
ah, 9
21h

cs
ds

Bl ocksDone, OFFh
nopri ntl drmsg

MbdeFl ag, Ver boseFl ag

nopri ntl drmsg

ax,word ptr LastDrUsed

LDMsgA, ' A" -1
LDMsgB, ' A" -1

byte ptr LDMsgA a
byte ptr LDMsgB, ah

code, get the second byte and try again

DEVLOAD PROJECT.

David Woodhouse.
Appendix 4 - DEVLOAD Source Code.

Page 8.

nov dx, of f set Last Dr Msg
nov ah, 9
i nt 21h
;1 f not Quiet Mdde, print nunber of devices installed.

noprintldrnsg: test ModeFl ag, Qui et Fl ag
jnz nopri nt num nst

; Get driver keep size into CX, don't print installed message if zero.

pop cX
push CX
j Xz nopri nt num nst

; Print nunmber of blocks installed, if any.

nov bl , Bl ocksDone
or bl , bl
jz nobl ocks
add NumBI | nst Msg, b
nov dx, of f set NunBl | nst Msg
nov ah, 9
i nt 21h
nov dx, of f set Num nst MsgA
cnp bl, 1
jnz bl nopl ura
i nc dx
bl nopl ural : i nt 21h

; Print nunmber of character devices installed, if any.

nobl ocks: nov bl , Char sDone
or bl , bl
jz nopri nt num nst
add NumChl nst Msg, b
nov dx, of f set NunChl nst Msg
nov ah, 9
i nt 21h
nov dx, of f set Num nst MsgA
cnp bl,1
jnz chnopl ura
i nc dx
chnopl ural : i nt 21h

:lnsert new LastDrUsed into "invar'.

noprintnumnst: les bx, | nvar
nov al , Last Dr Used
nov byte ptr es:[bx+20h], a

; Restore driver size in paragraphs.
pop bx
; Test whether to print driver size.

t est MbdeFl ag, Ver boseFl ag
jz noprintsize

;Print 'Size of driver in paras:'

nov dx, of f set Si zeMsg
nov ah, 9
i nt 21h
DEVLOAD PROJECT. David Woodhouse. Page 9.

Appendix 4 - DEVLOAD Source Code.

nov ax, bx

cal l PHWOr d
nov dx, of f set CrLfMsg
nov ah, 9
i nt 21h
noprintsi ze: or bx, bx
jnz | engt hnot zero

;Length of driver is zero, so exit now.

jmp exit
: Check whether it fits in the allocated bl ock
| engt hnot zero: cnp ax, Bl ockSi ze
j na drvrfits
nov dx, of f set TooBi gMsg
nov ah, 9
i nt 21h

; Change nenory allocation on | owest block in nmenory.

drvrfits: nov es, DvcSeg
nov ah, 4Ah
i nt 21h
jnc al | ocok

:Print "allocation error'.

nov dx, of f set Reduce2Err Msg
cal l PrintError

nov ah, 9

i nt 21h

nov dx, of f set Reduce2Err Msga
nov ah, 9

i nt 21h

; Check whether to print |INT vectors changed

al | ocok: t est MbdeFl ag, Ver boseFl ag
jz noprintints

;Print '"Interrupt vectors changed:'

nov dx, of f set | nt ChangeMsg
nov ah, 9
i nt 21h

;Print all | NTs changed.

xor bx, bx

nov es, bx

nov di , bx

nov si,of fset IntVectors
nov cx, 200h

:Print no comma before the first | NT nunber
nov dx, of f set ComaMsg- 1
; Compare I NT vectors with copy taken earlier
| oopi nts: rep cnpsw
;1f we stopped at the end, |eave the | oop

j cxz | astdiff

DEVLOAD PROJECT. David Woodhouse. Page 10.
Appendix 4 - DEVLOAD Source Code.

; Flag that at | east one was changed.
or bl, 1
cPrint "h, ' between | NT nunbers

nov ah, 9
i nt 21h

; Check whether it was offset or segnment that was different.

nov ax, d
dec ax

t est ax, 2
jnz not of s

;1f was the offset, so don't bother checking the segnent.

add di, 2
add si, 2
dec cX

;Print interrupt nunber.

not of s: shr ax, 1
shr ax, 1
cal | PHByt e

;After the first one, print 'h, before the rest.

nov dx, of f set CommuaMsg
jmp | oopints

;Print either full stop or 'None.'
lastdiff: nov dx, of f set Ful | St opMsg

; Test flag to see whether any were changed.

or bl , bl
jnz not nochanges
; None were changed, so print 'None.' instead of a full stop
nov dx, of f set NoneMsg
not nochanges: nov ah, 9
i nt 21h

; DS: TopCSeg, ES: 0000
:Link from NUL device

noprintints: | es bx, | nvar
add bx, 0022h
nov ax, NewDr vOf s
nov es: [bx], ax
nmov ax, NewDr vSeg
nov es: [bx+2], ax
push cs
pop es

; DS: TopCSeg, ES: TopCSeg
:Find | ast backslash in fil enane.

nov di , of fset NanmeBuf f er +80h
nov al,"\'

DEVLOAD PROJECT. David Woodhouse. Page 11.
Appendix 4 - DEVLOAD Source Code.

std

nov cx, 0080h
repnz scasb
cld

add di,2

; Point to arena header of driver segnent.

nmov ax, DvcSeg
dec ax
nov es, ax

; Set driver segnent to self-ownership

i nc ax
nov word ptr es:[1], ax

; DS: TopCSeg, ES: DvcSeg-1

:Move nane into arena header

nov si, di

nov di, 8

nmov cX, 8
novnarne: | odsb

cnp al , 2eh

jz fillOs

cnp al,0

jz fillOs

st osb

| oop novname

jmp stayexi t
fillOs: xor al, a

rep st osb
stayexit: nov dx, of f set Stayi nghvsg

jmp prexit

Br eakHandl er : iret ;wel |, that didn't take |ong!
e PHWOrd.

; I N: AX word to be printed

; QUT: not hi ng

; LOST: not hi ng

PHWr d: push ax
xchg al , ah
cal | PHByt e
nov al , ah
cal | PHByt e
pop ax
ret
. PHByte...........
; I'N AL byte to printed
; QUT: not hi ng
; LOST: not hi ng
PHByt e: push ax
nov ah, al
DEVLOAD PROJECT. David Woodhouse. Page 12.

Appendix 4 - DEVLOAD Source Code.

shr al, 1

shr al, 1

shr al, 1

shr al, 1

cal l PHNi bbl e

nov al , ah

cal l PHNi bbl e

pop ax

ret
e PHNi bble................
; I N: AL ni bbl e to be printed
; QUT: not hi ng
; LOST: not hi ng
PHNi bbl e: push dx

push ax

and al , OFh

add al,'0'

cnp al,'9

j na phil

add al,"A'-'"9'-1
phi: nov ah, 02h

nov dl, al

i nt 21h

pop ax

pop dx

ret
e PrintEBrror.
; I'N: AX Error nmessage to explain
; DX O fset of error nessage.
; DS CSeg
; QUT: DX O fset of error cause nmessage.
; LOST: AX
; BX

;Print first message.

PrintError: push ax
nov ah, 9
i nt 21h
pop ax

:Print error nunber.
cal l PHWOr d

;1f over 0Bh, zero it - (unknown).

cnp ax, 000Bh
jb not over B
xor ax, ax

; Look up of fset of error nmessage.

not over B: nov bx, of fset ErrTabl e
shl ax, 1
add bx, ax
nov dx, [bx]
ret

; I N: DS: Sl address of new driver header
; ES: BX address of old driver header

DEVLOAD PROJECT. David Woodhouse. Page 13.
Appendix 4 - DEVLOAD Source Code.

; QUT: DS: Sl address of next driver header
ES: BX address of new driver header
ZERO set if last driver in file

:Store device addresses.

I nstal | Devi ce: nov cs: NewDr v s, si
nov cs: NewDr vSeg, ds
nov cs: A dDrvOF s, bx
nov cs: O dDrvSeg, es
push cs
pop ds

;Print O Lf to keep display tidy.
; DS: TopCSeg, ES: A dDvcSeg

nov dx, of f set CrLfMsg
nov ah, 9
i nt 21h

; Set up request header.

I nsert next block device nunber.

nov al , Last Dr Used

nov byte ptr [RqHdr +16h], al
;I nsert command nunber zero - INT.

nov byte ptr [RqHdr+2],0

:Insert default end of driver address = start of driver.

nmov ax, DvcSeg
nov word ptr [RgHdr+10h], ax
nov word ptr [RgHdr+OEh], O

:lnsert default no blocks in driver.
nov byte ptr [RgHdr+0Dh], O

;Insert pointer to copy of command |ine.

nmov ax, PSPSeg

nov word ptr [RgHdr+14h], ax
nmov ax, NamePt r

nov word ptr [RgHdr+12h], ax
push cs

pop es

; DS: TopCSeg, ES: TopCSeg

;Store registers (don't count on driver to keep them.

push Si

;Set ES:BX to point to RgHdr (for DvcStrat call.)
nov bx, of f set RqHdr

; Set up return addresses on stack.
nov ds, cs: NewDr vSeg

; DS: NewDr vSeg, ES: TopCSeg

DEVLOAD PROJECT. David Woodhouse.
Appendix 4 - DEVLOAD Source Code.

Page 14.

:Push far address of DEVLOAD.

push cs
nov ax, offset after_int
push ax

; Push far address of dvc_int.

push ds
push word ptr ds:[si+8]

; Push far address of dvc_strat

push ds
push word ptr ds:[si+6]

; Pass control to dvc_strat, which RETFs to dvc_int, which
;in turn RETFs to after_int.

BREAKPO NT2: retf
; Restore registers.
after_int: pop S
;I ncrease count of character devices if it is one.

t est byte ptr ds:[si+5], 80h

push cs
pop ds
]z not char dev
inc Char sDone

cPrint CrLf after driver.

not char dev: nov dx, of f set CrLfMsg
nov ah, 9
i nt 21h

:Get offset of end of driver.
nov ax,word ptr ds:[RqHdr +OEh]

; Convert to paragraphs (rounded up.)

add ax, OFh
rcr ax, 1
nov cl,3
shr ax, cl

; Add segnent of end of driver.
add ax,word ptr ds:[RqHdr +10h]
; Compare wi th previous val ue of EndSeg

cnp ax, EndSeg
jb endset

; EndSeg has increased - this is only a problemif blocks are
;already installed.

t est Bl ocksDone, OFFh
jz okt ogr ow

; Some bl ock headers are already at EndSeg - can't change it now.

nov dx, of f set Badl ncMsg
nov ah, 9

DEVLOAD PROJECT. David Woodhouse. Page 15.
Appendix 4 - DEVLOAD Source Code.

i nt 21h
jmp endset

; No bl ock headers done yet - change EndSeg.
okt ogr ow: nov EndSeg, ax
; DS: TopCSeg

; Check number of units in driver. Skip if none.

endset : nov ch, [RqHdr +0Dh]
or ch, ch
jnz yesunits

;No units in this device, so skip the next section
jmp nouni ts

:Zero count of block nunber in this device.

yesunits: xor cl,cl

:Point ES:BP to new bl ock header | ocation
| es bp, Bl HEnd

;Point DS:BX to BPB pointer array fromdriver
| ds bx, dword ptr [RgHdr +12h]

;Point DS:SI to next BPB and increase pointer.

next bl k: nov si, [bx]
inc bx
inc bx

: Check sector size.

nov ax, [si]
cnp ax, cs: [SecSi ze]
j na secsi zeok
jmp secsi zeerr

secsi zeok: nov al , cs: Last Dr Used
nov cs: [Bl Hdr MsgA], ' A'
add cs: [Bl Hdr MsgA], a

: Check lastdrive

cnp al ,cs: LastDrive
jnz | dr ok
jmp Idrerr

;I ncrease LastDr Used.
| dr ok: i nc cs: Last Dr Used

:Store absol ute block no. and bl ock no. in device.

nov ah, cl
i nc cl
nov es: [bp], ax

; Store pointer to BPB ptr array.

push ds
push bx

:Point DS:BX to | ast bl ock header in chain

DEVLOAD PROJECT. David Woodhouse. Page 16.
Appendix 4 - DEVLOAD Source Code.

| ds

bx, cs: Chai nEnd

;Make it point to the new one.

; Store new pointer to end of block header chain

:Print address of new bl ock header

; Get poi

nopri nt bl hnsg:

: Cal cul ate of f set

il nsert

il nsert

add
nov
nov
sub

push
pop

nov
nov

t est
jz

nov
nmv
I nt

nov
cal
nov
nov
i nt
nov
cal

nov
nmv
I nt
nter to

| ds
| ds

nov
dec
nov
mul
add
"valid'
nov
poi nt er

nov
nov

bx, cs:word ptr Next Bl HOf s
[bx], bp

[bx+2] , es

bx, cs:word ptr Next Bl HOf s

cs
ds

Chai nEndOf s, bp
Chai nEndSeg, es

MbdeFl ag, Ver boseFl ag
nopri nt bl hnmsg

dx, of f set Bl Hdr Msg
ah, 9
21h

ax, es
PHWOr d
ah, 02h
dl , 3ah
21h

ax, bp
PHWOIr d

dx, of f set CrLfMsg
ah, 9
21h

LASTDRI VE array.

bx, | nvar
bx, [bx+16h]

al , cs: Last Dr Used
a

ah, cs: LDrSi ze

ah

bx, ax

flag.
byte ptr [bx+44h], 40h

to bl ock header for this drive

word ptr [bx+45h], bp
word ptr [bx+47h], es

; Restore pointer to BPB pointer array.

il nsert

pop
pop

poi nt er

nov
add

bx
ds

to device into bl ock header

ax, cs: NewDr vOF s
bp, cs:word ptr Next Bl HOf s

i f Verbose Mdde

in array of entry for this drive.

DEVLOAD PROJECT.

David Woodhouse.

Appendix 4 - DEVLOAD Source Code.

Page 17.

nov es: [bp-6], ax
nmov ax, cs: NewDr vSeg
nov es: [bp-4], ax
;Insert 'BPB needs rebuilding' flag into bl ock header
nov byte ptr es:[bp-1], OFFh
:Insert 'End of chain' into bl ock header

mov es: [bp], OFFFFh
sub bp, cs:word ptr Next Bl HOf s

; Expand BPB into bl ock header

nov ah, 53h ;hel l o woody y doesnt this work
i nt 21h

:Point ES:BP to | ocati on of next bl ock header
add bp, cs: Bl HSi ze

:Store | ocation of next block header
nov cs: Bl HEndOF s, bp

;I ncrease count of blocks installed.
i nc cs: Bl ocksDone

;Loop if nmore blocks in this device to install

nxt bl kchk: cnp cl,ch
jz nouni ts
] mp next bl k

; Sector size too big - print error and fail to install this block

secsi zeerr: push cs

pop ds

nov dx, of f set SSi zeErr Msg

nov ah, 9

i nt 21h

i nc cl

jmp nxt bl kchk

; Lastdrive too small - signal error and don't install any nore.

Idrerr: push cs

pop ds

sub ch, cl

add [LDr ErrMsg], ch

; Finished installing units, or was none to install

nounits: push cs
pop ds

Print init return status if not Verbose Mde.

t est MbdeFl ag, Ver boseFl ag

jz noprintinitret
nov dx, of fset InitRetMsg
nov ah, 9
i nt 21h
nov ax,word ptr [RgHdr+3]
cal | PHWr d
nov dx, of f set CrLfMsg
DEVLOAD PROJECT. David Woodhouse. Page 18.

Appendix 4 - DEVLOAD Source Code.

nov ah, 9
i nt 21h

; DS: TopCSeg
; Set up pointers.

noprintinitret: les bx, O dDr v
| ds si, NewDr v

; DS: NewDvcSeg, ES: A dDvcSeg

:Find location of next driver in file.

nov ax, ds: [si +2]
push ax

nov ax, ds: [si]
push ax

:Link Newbrv to A dDrv.

nov ds:[si], bx
nov ds: [si+2],es

:Restore next driver in file address to AX: Sl

pop Si
pop ax

;Point ES:BX to just installed driver
| es bx, cs: NewDr v
; Check whether to change segnment or use sanme seg for next driver

cnp ax, OFFFFh
jz nosegchange

; Segnent is different - add value onto old segnment and put into DS

nov cx, ds
add CcX, ax
nov ds, cx

; Set zero flag on whether this is the last driver in the file.

nosegchange: cnp si , OFFFFh
ret

St ayi ngMsg db 'Driver staylng resident.', 13, 10, 24h
FNameMsg db ' Fil enane $'

LoadAddr Msg db ' Load address : $

I ni t Ret Msg db "Init function return status : $
Si zeMsg db ' Size of driver (paragraphs) : $
I nt ChangeMsg db 'Interrupt vectors changed %
NoneMsg db ' Non , 13,10, 24h

CommaMsg db 'h,

Ful | St opMsg db 'h ', 13, 10, 24h

Col onOMsg db ':

Not St ayMsg db ' 0000

Cr Lf Msg db 13, 10, 24h

Last Dr Msg db 13,10, 'Last drive in use : '
LDVsgA db 'A:',13,10,"' Last drive avail. : '
LDVsgB db " A", 13,10, 24h

Bl Hdr Msg db ' Bl ock header for drive '

Bl Hdr MsgA db "A at $

NunBI | nst Msg db ' 0 bl ock$

DEVLOAD PROJECT. David Woodhouse. Page 19.
Appendix 4 - DEVLOAD Source Code.

NumChl nst Msg
Num nst MsgA
LDr Err Msg

AskEndMsg
SSi zeErr Msg

Error

ReduceEr r Msg
Rel EnvErr Msg
Rel PSPEr r Msg
GrabHi Err Msg
GrabLoErr Msg
Reduce2Er r Msg
Reduce2Er r Msga

Badl ncMsg

Not LoadMsg
TooBi gMsg

Error

Err2
Err3
Err5
Err7
Err8
Err9

ErrB

Er r Unknown
BadSwi t chMsg2

Err Tabl e

LDr Si ze
Bl HSi ze
Next Bl HOf s

Bl ocksDone
Char sDone

DvcSeg

ModeFl ag

Bl HEnd
Bl HEndCOf s
EndSeg

db "h - File not found)', 13, 10, 24h
db "h - Directory doesn't exist)", 13,10, 24h
db '"h - Access denied)', 13, 10, 24h
db 'h - Arena header corrupt ed)', 13, 10, 24h
db "h - Qut of nmenory)', 13, 10, 24h
db 'h W ong segnent passed') , 13,10
db ' PLEASE I NFORM THE AUTHOR! ', 13, 10, 24h
db "h - Format invalid)', 13, 10, 24h
db 'h'
db ')', 13,10, 24h
dw Er r Unknown
dw Er r Unknown
dw Err2
dw Err3
dw Er r Unknown
dw Err5
dw Er r Unknown
dw Err7
dw Err8
dw Err9
dw Er r Unknown
dw ErrB
e PROGRAM DATA. . . . o e
db 58h, 0 ;size of block in LastDrive array.
dw 0021h ;size in paras of paraneter bl ock.
db 19h, 0 ;offset in paraneter block of ptr to next one.
db 00 :no. of blocks installed.
db 00 :no. of character devices installed.
dw ? ; parameter bl ock for EXEC function.
dw 0000 ;1.e. segment, relocation factor.
db 00
| abel dwor d
dw 0000
dw ? ; segnent, end of required nenory.
dw ?

PSPSeg

db
db

db '0 character device$

db 's installed.', 13,10, 24h

db "0 bl ock(s) not installed - '

db ' LASTDRI VE= paraneter in CONFIG SYS too snmall.', 13,10, 24h
db 13,10,' No blocks or INTs installed - terminate (Y/N ? $
db 'Block not installed - sector size too large.', 13,10, 24h
nessages

db "Error: Can't reduce nenory allocation ($"

db "Error: Can't rel ease environment ($"

db "Error: Can't release original segnment ($"

db "Error: Can't grab enough nenory to relocate ($"

db "Error: Can't grab menory to load driver ($"

db 13,10,"Error: Can't change final nenory allocation ($"

db " Fbve installed driver; continuing anyway.", 13,10

db " Rebooting your systemis recomended.", 13, 10, 10, 24h

db "Error: End of driver address returned has increased after’
db 13, 10," bl ock header(s) installed.', 13,10

db ' I ncreased request will be ignored.', 13,10, 24h

db 13,10,'Error: EXEC failed ($

13,10, "' Error: Driver requested nore nenory than is
"avail able.', 13, 10, 24h

cause nessages.

DEVLOAD PROJECT.

David Woodhouse.
Appendix 4 - DEVLOAD Source Code.

Page 20.

Pat hPt r dd 0

NarmeBuf f er db 80h dup(?)

Last Dr Used db ?

LastDrive db ?

O dAl | ocStrat dw ?

Bl ockSi ze dw ?

NamePt r dw ? ;pointer to start of nane.
NanelLen dw ?

| nvar | abel dwor d

I nvarOF s dw ?

| nvar Seg dw ?

Chai nEnd | abel dwor d

Chai nEndCF s dw ? ;last device paraneter block in chain.
Chai nEndSeg dw ?

SecSi ze dw ?

NewDr v | abel dwor d

NewDr vOf s dw ? ;storage for Install Device routine.
NewDr vSeg dw ?

a dDrv | abel dwor d

adbrvOrs dw ?

A dDr vSeg dw ?

RgHdr db 20h dup (?)

I nt Vectors dw 200h dup (?) ;storage for interrupt vectors,

; for checki ng whether they've changed.
; Marker to signal |ast byte that needs relocation.

LASTBYTE equ $

Si gnOnMsg db ' DEVLOAD. EXE v3.0 (C) 1992, 1993 Davi d Wodhouse. ', 13, 10
db ' Loads device drivers fromthe command line.', 13, 10, 10, 24h

Hel pMsgl db ' Usage: DEVLOAD [<swi tches>] <filenane> [<parans>]', 13,10
db ' Enul ates devi ce=<fil enane> [<parans>] in CONFIG SYS', 13, 10
db 10,' Switches:', 13,10

db /A - automatic npbde (no abortion).', 13,10
db ' /? /H - display this help nessage.', 13,10

db ' /Q - quiet node.', 13,10

db ' /'V - verbose node.', 13,10

db 10, ' Not supported by DR-DCS or Ms-DOS before 3.00', 13, 10, 10
db ' Breakpoints for debugging drivers -',13,10
db ' Rel ocation RETF : $'

Hel pMsg2 db 13, 10, ' Execution RETF : $'

BadSwi t chMsg db 'Error: Bad switch ($'

NoFi | eMsg db "Error: No filenane given. Use DEVLOAD /? for instructions.'
db 13,10, 24h

Fi | eNoExi stMsg db "Error: Can't find file ($"

BadVer Msg db "Error: This program uses version-specific information, and'
db 13,10, only supports MsS-DOS versions 3 to 6.'
db 13,10, 24h

DEVLOAD PROJECT. David Woodhouse. Page 21.
Appendix 4 - DEVLOAD Source Code.

; Set up segnent registers.

Mai n: push cs
pop ds
push cs
pop es
cld

; Get PSP segnent.

nov ah, 62h
i nt 21h
nov cs: PSPSeg, bx

; Print sign on nessage.

nov dx, of f set Si gnOnMsg
nov ah, 9
i nt 21h

: Check DOCS versi on.

nov ax, 3000h
i nt 21h

cnp al,3

ja okver

]z ver3

;Version before 3.0, so print error and exit.

nov dx, of f set BadVer Msg
jmp prexit
; Version 3.x, so change variables to correct val ues.
ver 3: nov LDr Si ze, 51h
nov byte ptr Bl HSi ze, 20h
nov Next Bl HOF s, 18h

: Check command | i ne.

okver: nov ds, PSPSeg
xor bh, bh
nov bl , byte ptr ds:[80h]
or bx, bx
jnz cmdl i neexi sts

;No paraneters given - print error and exit.

nofi | enane: nov dx, of f set NoFi |l eMsg
push cs
pop ds
jmp prexit
; Command |ine exists - convert to all upper case.
cnmdl i neexi sts: nov si, 0081h
nov cX, bx
t oupper | oop: | odsb
cnp al,'a
jb not | ower
cnp al,'z'
ja not | ower
xor al , 20h
nov [si-1],a
not | ower : | oop t oupper | oop

; Check whether filenanme present.

DEVLOAD PROJECT. David Woodhouse. Page 22.
Appendix 4 - DEVLOAD Source Code.

nov si, 0081h
add bx, si

:DS:Sl--> Start of command | i ne.
:DS: BX--> End of conmand |i ne.

get | oopl: | odsb
;1 f passed end of command |ine, exit |oop.

cnp si, bx
ja nof i | ename

; Loop whil e whitespace.

cnp al,'
jz getl oopl
cnp al, 9
jz getl oopl

; Found non-whi tespace, point back at it.

dec Si
;DS: Sl --> first non-whitespace char on command |i ne.
;Get current switch char (usually '"/').

nov ax, 3700h
i nt 21h

: Check whether first char on command line is a switch

cnp [si],d
jz isswitch
] mp noswi tch

:Load switch and check it.

i sswitch: | odsw

cnp ah, ' ?'
jz hel p
cnp ah,'H
jz hel p
cnp ah,' Q@
jz qui et
cnp ah, ' A
jz aut o
cnp ah, 'V
jz ver bose

;Unrecogni sed switch - print error and exit.

unknownswi t ch: push ax
push cs
pop ds
nov dx, of f set BadSwi t chMsg
nov ah, 9
i nt 21h
pop dx
nov ah, 2
i nt 21h
nov dl, dh
i nt 21h
nov dx, of f set BadSwi t chMsg2
jmp prexit
DEVLOAD PROJECT. David Woodhouse. Page 23.

Appendix 4 - DEVLOAD Source Code.

; Print hel p nessage.

hel p: push cs
pop ds
nov dx, of f set Hel pMsgl
nov ah, 9
i nt 21h
nov ax, of f set BREAKPO NT1
cal | PHWOr d
nov dx, of f set Hel pMsg2
nov ah, 9
i nt 21h
nov ax, of f set BREAKPO NT2
cal | PHWOr d
nov dx, of f set CrLfMsg
jmp prexit
; Set verbose node fl ag.
ver bose: or cs: MbdeFl ag, Ver boseFl ag
and cs: ModeFl ag, not Qui et Fl ag
jmp swi t chl oop

; Set automatic node flag.

aut o: or cs: ModeFl ag, Aut oFl ag
jmp swi t chl oop

; Set qui et node flag.

qui et : or cs: ModeFl ag, Qui et Fl ag
and cs: ModeFl ag, not Ver boseFl ag

; Skip to next space.

swi t chl oop: | odsb

cnp si, bx

j na swi t chl oopl

] mp nof i | ename
swi t chl oopl: cnp al,9

jz out swi t chl oop

cnp al,' '

jnz swi t chl oop

; Point back at first space and go back to getloopl to skip
:to either next switch or to fil enane.

out swi tchl oop: dec Si
jmp getl oopl
; Store pointer to start of pathnane.
noswi t ch: push S
nov bp, si

; Find pointer to actual 8-char filenane and end of pathnane.

get | oop2: | odsb
cnp al,"\'
jz backsl
cnp al,' /'
jnz nobacks

; Move pointer to after backslash into BP

backsl : nov bp, si

DEVLOAD PROJECT. David Woodhouse. Page 24.
Appendix 4 - DEVLOAD Source Code.

; Break out of loop if space, tab, CR or LF found.

nobacksl : cnp al,' '
jz out | oop2
cnp al, 9
jz out | oop2
cnp al, 13
jz out | oop2
cnp al , 10
jz out | oop2

; Check whet her end of command |ine reached. Loop if not.

cnp si, bx
j na get | oop2

;DS: Sl -2 --> last char of pathnane.
:DS:BP --> first char in fil enane.

; Cal culate length of filenane.

out | oop2: nov es: NanePtr, bp
dec Si
nov cX, S
sub si, bp
nov es: NanelLen, s

; Restore pointer to start of pathnane.

pop Si

; Check whether file specified contains path.
cnp si, bp
jz not pat hnane

; Set PathPtr to point to zero - sinmulate no PATHs left.

nov word ptr es:PathPtr, of fset DvcSeg+2
nov word ptr es:PathPtr+2, cs

;Start with default directory.

not pat hnare: sub CcX, S
nov di , of fset NanmeBuf fer

; Use default directory or one specified first tine, not PATH

jmp ent rypoi nt

; Filenanme doesn't exist as specified - try using PATH

; Check whet her we've already got a pointer to PATH

al | pat hl oop: | ds si, Pat hPtr
or Si, si
jnz pat hf ound

; Not yet, so find PATH segnent.

nov ds, cs: PSPSeg
nov bx,word ptr ds:[002Ch]

: Check whether it exists.

or bx, bx _
jnz envsegexi sts

DEVLOAD PROJECT. David Woodhouse. Page 25.
Appendix 4 - DEVLOAD Source Code.

;No nore PATH itens or no PATH segnent, so print error and exit.

fil enoexi st: push cs
pop ds
nov dx, of f set Fil eNoExi st Msg
jmp fileerr

; Store PATH segnent in local pointer.

envsegexi st s: nov ds, bx
nov word ptr cs: PathPtr+2, bx

: Scan envi ronnment for ' PATH=

envl oopl: | odsb
cnp al, 0
jz fil enoexi st
cnp al,'P
jnz next envvar 1
| odsb
cnp al,' A
jnz next envvar 1
| odsb
cnp al,'T
jnz next envvar 1l
| odsb
cnp al,'H
jnz next envvar 1l
| odsb
cnp al,'=
jnz next envvar 1
] mp pat hf ound

; Not ' PATH=', so skip to next environnent variable.

next envvar: | odsb

next envvar 1: or al, a
jnz next envvar
] mp envl oopl

;Store file error nmessage.
pat hf ound: push ax

; Ski p spaces at start of this PATH item
pat hf oundl oop: | odsb

cnp al,'
jz pat hf oundl oop
cnp al, 9
jz pat hf oundl oop

;DS:SI-1 --> first non-whitespace in PATH item

1 f we've reached the end of the PATH statenment, error and exit.

cnp al,0
jz fil enoexi st

;Forget file error nessage - we'll try again
add sp, 2

:Store start of this PATHitem+ 1
push Si
:Find end of this PATH item
pat hl oop1: | odsb

DEVLOAD PROJECT. David Woodhouse. Page 26.
Appendix 4 - DEVLOAD Source Code.

cnp al, 0

jz endpat h
cnp al,';"'
jnz pat hl oopl

:Store start of next PATH item
endpat h: nov word ptr cs:PathPtr,s

;1f last one, point back at the term nating NULL

or al , al
jnz i smor epat hs
dec word ptr cs:PathPtr

;Calculate length of this PATH item

i smor epat hs: nov cX, S
pop Si
sub cX, Si
dec Si

; Copy PATH itemto NanmeBuffer.

nov di , of fset NanmeBuffer
rep novsb

; Add backsl ash if necessary.

push cs

pop ds

cnp byte ptr [di-1],"'\"'
jz al readybacks

nov al,"\'

st osb

; Copy filename after PATH item

al readybacksl : nov si, NamePt r
nmov cx, NanelLen
nov ds, PSPSeg

entrypoi nt: rep novsb

; Store termnating NULL

xor al , al
st osb

; Check whether file exists by attenpting to get attributes.

push cs

pop ds

nov dx, of f set NanmeBuf f er

nov ax, 4300h

i nt 21h

jnc okfil ename

jmp al | pat hl oop

;File exists - expand fil enanme using function 60h

okfil ename: nov si, of fset NameBuffer

nov di, si

nov ah, 60h

i nt 21h

;Get old allocation strategy.

DEVLOAD PROJECT. David Woodhouse. Page 27.
Appendix 4 - DEVLOAD Source Code.

nov ax, 5800h

i nt 21h

nov A dAl | ocStrat, ax
: Reduce main allocation

; DS: CSeg, ES: CSeg

nov bx, of f set LASTBYTE+10Fh
add bx, of f set STACKLEN

nov cl,4

shr bx, cl

nov cX, bx

nmov es, PSPSeg

nov ah, 4ah

i nt 21h

jnc reduceok

;Failed to reduce nenory allocation, so print error and exit.

nov dx, of f set ReduceErr Msg
jmp al | ocerr

; Set allocation strategy to highest fit.

reduceok: nov ax, 5801h
nov bx, 2
i nt 21h

; Request enough at top of nem for PSP + DEVLOAD + STACK

nov bx, cx
nov ah, 48h
i nt 21h
pushf

nov es, ax

; Reset allocation strategy to old val ue.

; DS: CSeg, ES: TopPSPSeg

nov ax, 5801h
nov bx, O dAl | ocStr at
i nt 21h

; Check whet her grabbed nenmory OK

popf
j nc nogr abhi err

;Failed to grab menory, so print error and exit.

nov dx, of f set GrabH ErrMsg
jmp al | ocerr

; Make new PSP at top of nmenory.
; DS: CSeg, ES: TopPSPSeg

nogr abhi err: nov ds, PSPSeg
nov si,word ptr [2]
nov dx, es
nov ah, 55h
i nt 21h

; Fix parent PSP record in new PSP

nov ax, ds: [16h]
nov es: [16h], ax

DEVLOAD PROJECT. David Woodhouse. Page 28.
Appendix 4 - DEVLOAD Source Code.

; Move programto top of menory.

nov cx, of fset LASTBYTE+8Fh
and cx, OFFFOh

shr cx, 1

nov di , 80h

nov si, di

rep noVSw

; Make segnment at top of nmenory self-owned

push cs
pop ds
nov ax, es
dec ax
nov ds, ax
nov word ptr ds:[1],es
push cs
pop ds
;Cal culate | ocation of stack at top of menory.
nov bx, of f set LASTBYTE+10Fh
nov cl,4
shr bx, cl
nov ax, es
add ax, bx

; Change to stack at top of nenory.
nov ss, ax

; Make PSP at top of menory current.

nov bx, es
nov ah, 50h
i nt 21h

; Transfer control to top of menory via RETF

nov ax, es
add ax, 10h
nov ds, ax
push ax
nov ax, of fset rel ocated
push ax
BREAKPOI NT1: retf
CSeg ends
SSeg segnment stack par a ' STACK
org 0
db STACKLEN dup (?)
SSeg ends
end Mai n
DEVLOAD PROJECT. David Woodhouse. Page 29.

Appendix 4 - DEVLOAD Source Code.

APPENDIX 5- NETLIST SOURCE CODE.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <dos. h>

voi d Di sconnect (char *devnane);

voi d ShowConnections();

voi d ShowUse();

voi d Connect (char *devnanme, char *extnanme, char *password);

struct REGPACK regs;
char | ocal nanme[16];
char netnane[128];

voi d nmain(int argc, char **argv)

printf ("NETLIST. EXE v1.2 (C) 1992 David Wwodhouse.\n\n");

regs.r_ax=0x5e00; /* get |ocal nachine name */
regs. r_dx=(unsi gned) net nane;
regs. r_ds=FP_SEJ net nane) ;

intr (0x21, & egs);

if (regs.r_flags&l) /* if carry set */
printf ("\007Error: MS-Net not running on this system\n");
el se

{

if (argc<2)
ShowConnect i ons();

el se

if (argc<3 || !strcnp (argv[1],"/?"))
{

ShowUse() ;
ShowConnect i ons();
}

el se

if (!'stricnp (argv
Di sconnect (argv

el se

if (!stricnp (argv ,1d"))
Di sconnect (argv);

el se

Connect (argv[1],argv[2],argv[3]);

}

,"1dh))
)

—_—

2
1
1

—r— ——r—

]
2]

/* ShowConnections() - Show all net redirections */
voi d ShowConnecti ons()

{

i nt count=0;

printf ("Local machine nane: %\n\n"

"Networ k connections:\n Local name Net wor kK namne\ n"
, het nane) ;
regs. r_ax=0x5f 02; /* get redirection entry #BX */
regs.r_es=FP_SEQ net nane) ;
regs. r_di =(unsi gned) net nane;
regs. r_si =(unsi gned)| ocal nane;
regs. r_bx=0;

DEVLOAD PROJECT. David Woodhouse.
Appendix 5 - NETLIST Source Code.

Page 1.

intr (0x21, & egs);
do

printf ("%6s %\n",|ocal nane, net nane) ;
regs. r_ax=0x5f 02;

regs.r_bx=++count;

intr (0x21, ®s);

}
while (!(regs.r_flagsé&l)); /* while carry not set */
}
voi d ShowUse()
printf (
"Use: NETLI ST <l ocal nane> /D Di sconnect devi ce\n"
" NETLI ST <l ocal nane> <net nane> [<password>] Attach device\n"
" NETLI ST Li st net devices\n"
" NETLI ST /? Display this list\n\n");
}

voi d Di sconnect (char *devnane)

{

regs. r _ax=0x5f 04;
regs.r_si =(unsi gned) devnane;
regs.r_ds=FP_SEQ devnane) ;

strupr (devnane);

intr (0x21, & egs);
if (regs.r_flags&l)
{
/* carry set - error */
printf (" Error disconnecting %

, devnane) ;
switch (regs.r_ax) /* holds error code */

case 15
printf ("Device not connected.\n");
br eak;

defaul t:
printf ("No. %X\ n",regs.r_ax);

el se

{
if (devname[1]==":")
printf ("Drive");
el se
printf ("Device");
printf(" % disconnected.\n", devnane);
}
}

voi d Connect (char *devnane, char *extnanme, char *password)

strupr (devnane);
strupr (extnane);

i f (password==NULL)
passwor d="\ 0"

el se
strupr (password);

regs.r_bx=(devnanme[1] ==":"')7?4:3; /* set printer/drive flag in BL */

DEVLOAD PROJECT. David Woodhouse.
Appendix 5 - NETLIST Source Code.

Page 2.

regs.r_cx=3; /* arbitrary paranmeter - why not 3? */
regs. r_ax=0x5f 03;

regs.r_ds=FP_SEQ devnane) ;

regs.r_si =(unsi gned) devnane;

regs.r_es=FP_SEQ net nane) ;

regs. r_di =(unsi gned) net nane;

sprintf(netnane, "%%%", extnane, '\0', password);

intr (0x21, ®s);
if (regs.r_flags&l)

/* carry set - error */
printf (" Error connecting % to % -\n",devnanme, extnane);

switch (regs.r_ax)

case 0x35:
printf ("Network path not found.\n");
br eak;

case 0x56:
printf ("Access denied.\n");
br eak;

case 0x47:
printf ("Server closed.\n");
br eak;

case 0x55:
if (devnane[1]==":
printf ("Drive");
el se
printf ("Device");
printf (" in use.\n");
br eak;

defaul t:
printf ("No. % 2X\n",regs.r_ax);

el se
{
if (regs.r_bx==3)
printf ("Device");
el se
printf ("Drive");

printf (" % connected to %\n", devnane, ext nane);

DEVLOAD PROJECT. David Woodhouse. Page 3.
Appendix 5 - NETLIST Source Code.

APPENDIX 6 - REDIR SOURCE CODE.

Catch network redirection

© AVENDVENTS:

:v1.0 Early Feb. '92
; Qui ckly knocked up to see whether it works or not.
VAR 20/ 2/ 92
; Poi nter to data buffer included behind INT 21h vector so that REDI RSHW
; can read it, rather than having to use SYMDEB. Message added.
ivl. 2 11/ 3/ 92
; General cleanup, i.e. exit via INT 21h function 31h, inproved buffer
; control, etc.
cseg segnment para public 'code
assume cs:cseg, ds:cseg, es:cseg, Ss:nothing
nov ax, 3521h
i nt 21h ; get int 21 vector
push cs
pop ds
nov dx, of f set Message
nov ah, 9 ; print nessage
i nt 21h
nov word ptr ol dvectseg, es
nov word ptr ol dvect, bx : store at JMPF instruction
nov dx, of f set newhandl er
nov ax, 2521h : set int 21 vector
cl
i nt 21h
st
nov dx, of fset LASTBYTE
shr dx, 1 ;convert to paragraphs
shr dx, 1
shr dx, 1
shr dx, 1
add dx, 1 ;don't lose fraction
nov ax, 3100h
i nt 21h ;o tsr
Message: db 'REDI R EXE v1.2 (C) 1992 Davi d Wodhouse', 13, 10
db ' Catches network redirections.', 13, 10
db 'Now installed. Use REDIRSHWto list redirections.', 13,10,'$%$'
dw buf f er : data for RED RSHW
buf ptr: dw buf fer
i dnsg: db '(ODW, 0
newhandl er: pushf
cnp ax, 5f 03h
jnz goback ; not a redirect conmand
push ax
push CX
push Si
push ds
push di
push es
push cs
pop es
nov di ,word ptr cs:bufptr ; point to buffer
cnp di , of fset buffer+0f 80h
ja buf f er f ul

DEVLOAD PROJECT.

David Woodhouse.
Appendix 6 - REDIR Source Code.

Page 1.

| oopl

| oop2

| oop3

bufferfull

goback:

ol dvect:
ol dvect seg

buffer:
LASTBYTE

cseg

| odsb
st osb
or
jnz

pop
pop
push
push

| odsb
st osb
or
jnz

| odsb
st osb
or
jnz

pop
pop
pop
pop
pop
pop

popf
db
dw

db
db

ends
end

: store | ocal nane

al, a
| oopl

ds
s
s
ds

al,a
| oop2

al, a
| oop3 ; store netnanme+password

word ptr cs: bufptr,di

es
d
ds
s
cX
ax

Oeah . JMPF

1000h dup (0) ; Shoul dn't actually do this -
0 ; LASTBYTE equ $+1000h woul d be
better, but | can't be
:bothered to check whether it
;woul d actual Iy work.
. DWv1. 2

DEVLOAD PROJECT.

David Woodhouse.
Appendix 6 - REDIR Source Code.

Page 2.

APPENDIX 7 - REDIRSHW SouRcCE CODE.

#i ncl ude <string. h>
#i ncl ude <dos. h>
#i ncl ude <stdi o. h>

int min ()

char far *int21;
char far *bufend;
unsi gned seg, of s;

printf ("RED RSHWEXE (C) 1992 David Wodhouse\n"
"Shows redirections caught by REDI R EXE\n");

int21=(char far *)getvect(0x21);
if (strcmp(int21-6,(char far *)"(C)DW))

printf ("Error: REDIR EXE not first in INT 21 chain.\n");
exit (1);
}

el se

{

seg=FP_SEQ(i nt 21) ;

of s=*(unsigned far *)(int21-10);

buf end=(char far *)MK_FP(seg,*(int far *)(int21-8));
i nt 21=MK_FP(seg, of s);

whil e (int2l<bufend)

int2l+=printf("%s ",int2l);

int21+=printf("%s ",int2l);

int21+=printf("%s\n",int21);

}
}

}

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 7 - REDIRSHW Source Code.

APPENDIX 8- MYSHELL SourcE CODE.

#i ncl ude <process. h>

#i ncl ude <stdi o. h>

#i ncl ude <string. h>

#i ncl ude <dos. h>

struct REGPACK regs;

voi d Connect (char *devnanme, char *netnane);
voi d mai n()

int tries=0;

printf ("\n\nNetwork entry for David Wodhouse. (C) 1992\ n");

printf ("Fixed 21/2/92.\n");

while (tries++<3 &&

stricnp(getpass("This grants access to ny own directories. Type password:"),"WOODY"))
{
printf ("Sorry - Access Denied. Try again.\n\n");

if (tries==3) __emt__(0Oxea, 0x00, 0x00, Oxff,6 Oxff); /* boot */

Connect ("N ", "\\\\ SERVERA\\ 49133088""\ 0""43201990") ;

Connect ("P:","\\\\ SERVERA\\ PUBLI C""\ 0" " OBLONGAT") ;

Connect ("Q","\\\\ SERVERA\\ PUBX\ 0") ;

Connect ("R ", "\\\\ SERVERA\\ 38609157""\ 0""34705118");

Connect ("Z:","\\\\ SERVERZ\\ PUBLI C""\ 0" " OBLONGAT") ;

Connect ("LPT1", "\\\\ SERVERA\\ L@B50\0");

Connect ("LPT2", "\\\\ SERVERJ\\ L@B50\0");

Connect ("LPT3","\\\\ SERVERZ\\ PSTSCR\ 0") ;

whil e (execl ("A:\\COWAND. COM', "", "/p", NULL)==-1)
{
printf ("\007Error - A:\\COVWAND. COM not found. Insert disk and press a key.\n\n");
getch();
}

}

voi d Connect (char *devnane, char *netnane)

{

regs.r_bx=(devnane[1] ==":"')7?4:3; /* set printer/drive flag in BL */

regs.r_cx=3; /* arbitrary paranmeter - why not 3? */

regs. r_ax=0x5f 03;

regs.r_ds=FP_SEQ devnane) ;

regs.r_si =(unsi gned) devnane;

regs.r_es=FP_SEQ net nane) ;

regs. r_di =(unsi gned) net nane;

intr (0x21, ®s);
if (regs.r_flags&l)
{
[* carry set - error */
printf (" Error connecting % to %\n", devnane, netnane);

switch (regs.r_ax)

case 0x35
printf ("Network path not found.\n");
br eak;

case 0x56
printf ("Access denied.\n");
br eak;

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 8 - MYSHELL Source Code.

case 0x55:
if (devname[1]==":")
printf ("Drive");
el se
printf ("Device");
printf (" in use.\n");
br eak;

defaul t:
printf ("No. % 2X",regs.r_ax);

el se

{
if (regs.r_bx==3)
printf ("Device");
el se
printf ("Drive");

printf (" % connected to %\n", devnane, net nane);

DEVLOAD PROJECT.

David Woodhouse.
Appendix 8 - MYSHELL Source Code.

Page 2.

nmsg0

j npt abl

r gheadr
; page

TITLE

VERSI ON

DATE

APPENDIX 9 - WOMBATS SOURCE CODE.

WOMBATS. SYS to grab SYSINIT nodul e fromtop of mem

1.0
20/ 3/ 92

(O 1992 Davi d Wodhouse

SEGVENT para public 'code'

org O

assume cs:cseg, ds: cseg, es: not hi ng, ss: cseg

dw
dw
dw
dw
dw
db

db

e equ

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

dd

dvcstrat proc

nmov c¢s:word
nmov c¢s:word

ret

dvcstrat

dvci nt

push
push
push
push
push
push
push
push
push

offffh
offffh
8000h
dvcstrat
dvci nt
"GSyslnit"

:next dvc

;attr.

; devi ce strategy
; device interrupt
; nfg nane/ unit

0Dh, 0Ah, "WOVBATS. SYS", 0Dh, 0Ah, 00

$

INIT ;init

noop :medi a check

noop ; bui I d bpb

noop ;ioctl input

noop ;i nput

noop ;input, non-destruct

noop ;i nput status

noop ;input flush

noop ; out put

noop ;output, verify

noop ; out put status

noop ;output flush

noop ;ioctl output

0 ; request header ptr
; devi ce strategy

far

ptr rgheadr, bx ; save request header ptr

ptr rgheadr+2, es

endp

proc far

ax
bx
cX
dx
d

s

bp
ds
es

; devi ce interrupt

;save all regs

DEVLOAD PROJECT.

David Woodhouse.
Appendix 9 - WOMBATS Source Code.

Page 1.

nmov bx, cs

nov ds, bx

| es di, cs:rgheadr
xor bx, bx

nov es: [di +3], bx
nmov bl , es: [di +2]

cmp bl, 13
cnc
nmov al , 3
jc contl
shl bx, 1
cld

;es:di --> req. header

:status word = 0
; get command

;make sure in range

;assume unknown command error
i f bad command -->
;bx = index to jnp address

call word ptr cs:[jnptabl e+tbx] ;do command

cont 1:
| es di, cs:rgheadr
nov ah, 2
rcr ah, 1
or es:[di+3], ax
pop es
pop ds
pop bp
pop si
pop di
pop dx
pop cx
pop bx
pop ax
ret

dvcint endp

; page

mast er proc near

es
nmov ax, 9000h

nov ds, ax

nmov cx, 1000h

nov di, of fset buffer
mov si, 0

cld

repz novsb

nov si, sp

nov ax, ss: [si +16h]
call phword

nov ax, 0e3ah

int 10h

nov ax, ss: [si +14h]
call phword

nmov ax, 0e0Odh

int 10h

nov ax, 0eOah

int 10h

nov ax, ss

call phword

nov ax, 0e3ah

int 10h

nov ax, sp

call phword

;commands all return here

;es:di --> req. header

:set done bit

yrotate in cy flag for error
;or in error condition

;restore all regs

;grab sysinit code

DEVLOAD PROJECT.

David Woodhouse.
Appendix 9 - WOMBATS Source Code.

Page 2.

| es di, cs:rgheadr ;point to request header
nmov word ptr es:[di+14], of fset LASTBYTE ;set |ast byte needed
nov es:[di +16], cs

i 2:
ret
; page
e No Operation:
noop
nov ax, 3 :unknown conmand
stc
ret
e e phword.
; I N: AX word to be printed
; QUT: not hi ng
; LOST: not hi ng
phwor d: push ax
xchg al, ah
cal | phbyt e
nov al , ah
cal | phbyt e
pop ax
ret
D phbyte...........
; I'N: AL byte to printed
; QUT: not hi ng
; LOST: not hi ng
phbyt e: push ax
nov ah, al
shr al, 1
shr al, 1
shr al, 1
shr al, 1
cal | phni bbl e
nov al , ah
cal | phni bbl e
pop ax
ret
A, phnibble................
; I N: AL ni bble to be printed
; QUT: not hi ng
; LOST: not hi ng
phni bbl e: push ax
and al , OFh
add al,'0'
cnp al,'9
j na phil
add al,"A-'"9 -1
phi: nov ah, OEh
i nt 10h
pop ax
DEVLOAD PROJECT. David Woodhouse. Page 3.

Appendix 9 - WOMBATS Source Code.

Cet setup parameters

db ' BUFFER STARTS HERE:'
buffer equ $
LASTBYTE equ $+1000h

mast er endp
cseg ends
end nain
DEVLOAD PROJECT. David Woodhouse. Page 4.

Appendix 9 - WOMBATS Source Code.

APPENDIX 10 - SHOWPARM SoOURCE CODE.

; TITLE
; VERSI ON 1.0
; DATE

SHOWPARM SYS to grab SYSINIT nodule fromtop of mem
20/ 3/ 92

(O 1992 Davi d Wodhouse

cseg SEGVENT para public 'code

org O

assume cs:cseg, ds: cseg, es: not hi ng, ss: cseg

mai n: dw Offffh :next dvc
dw Offffh
dw 8000h cattr.
dw dvcstrat ; devi ce strategy
dw dvci nt ; device interrupt
db "GSyslnit" ; nfg name/ unit

nsgo db 0Dh, 0Ah, " SHOANPARM SYS", 0Dh, 0Ah, 24h

r ghdr dd 0

dvcstrat proc far

nmov cs:word ptr rqhdr, bx

; request header ptr

; devi ce strategy

; save request header ptr

nmov cs:word ptr rqghdr+2, es

ret

dvcstrat endp

dvci nt proc far
push ax

push bx

push cx

push dx

push d

push s

push bp

push ds

push es

I es di,cs:rghdr

nmov es:[di +3], 0100h

cmp byte ptr es:[di+2],0
jnz contl

call init

cont 1:
pop es
pop ds
pop bp
pop si
pop di
pop dx
pop cx
pop bx
pop ax
ret

; devi ce interrupt

;save all regs

;es:di --> req. header
:status word = done
cis it INIT commmand?
‘no -->

:commands all return here

;restore all regs

DEVLOAD PROJECT.

David Woodhouse.
Appendix 10 - SHOWPARM Source Code.

Page 1.

dvcint endp

L ENE T
Init
push cs
pop ds
nov dx, of f set nmsg0
nov ah, 9
i nt 21h ;print signon nsg
| ds si,es:[di +12h] ;1 oad pointer to conmand |ine
| oop: nov ax, 0e20h
i nt 10h ; print space
| odsb
cal | phbyt e
cnp al , 0Oah
j nz | oop
nov word ptr es:[di+0eh], 0000 ;set last byte needed
nov es: [di +10h], cs
ret
e e phword.
; I N: AX word to be printed
; QUT: not hi ng
; LOST: not hi ng
phwor d: push ax
xchg al, ah
cal | phbyt e
nov al , ah
cal | phbyt e
pop ax
ret
D phbyte...........
; I'N: AL byte to printed
; QUT: not hi ng
; LOST: not hi ng
phbyt e: push ax
nov ah, al
shr al, 1
shr al, 1
shr al, 1
shr al, 1
cal | phni bbl e
nov al , ah
cal | phni bbl e
pop ax
ret
A, phnibble................
; I N: AL ni bble to be printed
; QUT: not hi ng
; LOST: not hi ng
phni bbl e: push ax
and al , OFh
add al,'0'
cnp al,'9
j na phil
add al,"A-'"9"-1
phi: nov ah, OEh
i nt 10h
DEVLOAD PROJECT. David Woodhouse. Page 2.

Appendix 10 - SHOWPARM Source Code.

pop ax

ret
e Cet setup parameters
cseg ends
end nain
DEVLOAD PROJECT. David Woodhouse. Page 3.

Appendix 10 - SHOWPARM Source Code.

