CDF

Fortran Reference Manual

Version 3.1, January 18, 2006

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright © 2006

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - cdfsupport@listserv.gsfc.nasa.gov

Contents

i %o 2 0] o1 11 0o USROS 1
1.1 VIMS/OPENVIMS SYSTEIMSviiviieieieieeseesiestestestestesteseeseesaessestestestesseaseeseessessessessessesseasesssensesaessessessessesssessensenses 2
1.2 LN S] (=] 1 LSS 2
1.3 Windows NT/2000/XP Systems, Digital Visual FOITran...........ccocooiiiiiiiiiiiiieieese et 2

Y N 1 1 1] o SRS SPR SRS 5
2.1 VAXIVMS & VAXIOPENVIMS SYSLEIMSeeuiiiiiiiiitirieieetesteieste sttt sttt sb ettt sbe e ans 5
2.2 DEC AIPa/OPENVIMS SYSTEIMSviiiiiitiietiitirieieattsteseete sttt sttt eb st s bbbt bbb bbbt es b b ens 5
2.3 UNDX SYSEBIMIS ..ttt etttk btk bbbtk £ e b b6 b b e e b b £ e b b e b bt b b et b bttt e b b 6

2.3.1 Combining the ComPile and LINKcc.oiiiiie e bbb sn e 6
2.4 Windows NT/2000/XP Systems, Digital Visual FOItran.............ccoceiiiiriiiiiiie e e 6

3 Linking Shared CDF LiDrary ... 9
31 VAX (VMS & OPENVIMS) ..ottt bbbt bbbt bbbkt b ket b bt bt e bttt 9
T B | Lo N [o] TN (@] o LT AV 1Y) S PSS 10
3.3 SUN (SOLARIS) ..ttt b bbb bbbt bbbt b bbbt n s 10
34 HP 9000 (HP-UX) ..ottt b et bbbt bbbt b bttt n s 11
3.5 IBM RSB000 (ADX) 1.rireiieieiiirireireeiee sttt r bRttt 11
3.6 DEC AIPNA (OSF/L) .ottt 11
BT SGH (IRIX B.X)vtenesrreereeieies stttk e Rt e Rt Rt R Rt 11
3.8 LINUX (PC & POWEE PC) .ttt bbbt bbbttt b bbb bbbttt 11
3.9 WiINAOWS (NT/2000/XP) ...ueuiieeieiiieieieietesisiete sttt sttt sttt et b et b sttt e et e b ettt e et eb et eb et e e bene s 12

4 Programming INTErfacCeccocviiii i 13
A1 ATQUMENT PASSING ..e.viuiititesietiiteieet ittt ettt bbb bbbt e bbb bbb bbb bbb bbbt bttt nb et 13
4.2 TEEIM RETEIENCING ...ttt ettt bbbt b bbbt bbb bbb eb et ns 14
4.3 StALUS COUE CONSTANTS.......itiitiitiitiitietiee ettt sttt ettt e bt b e b e bttt e e e e e besb e ke sbeebeebeeaeeseeebenbeebeabeaneereennennas 14
A4 CDF FOIMALS....eitiuiiiteteeisteieies ettt bttt b bttt b e b b et e b b e e bk e b e £ b b e e b e bt £ s b b e e e b e b e £ e b b e bbbt bbb e et bt 14
45 (61D o -1 r- R Y/ o[- PO P PSRRI 14
T B T - B =g Voo o 1o [SRRSO 15
O A O - B I 1= ot Lo L oSS 16
I Vg T- o] (TN AV, = o] 1 TSP 17
4.9 ReCOrd/DIMENSION VAITANCES.ciitiietirteietisteiete sttt st et st ee bt abe st ettt e s e bt sbes bt b s e abe st es b e b s e e benbeneans 18
T O o T o] £=T [P 18
A.L11 SPAISEINESSvittitieieeieett ettt ab skt be et e e b e R R R R h R R R R R R R AR R R R R e R R e e Rt R e e r R R R e 19

111 SPAISE RECOMS .. vueititeriiteitei ettt ettt b ettt b bbbt bbbt et e e bt ekt e bt e ekt e b et ekt sb e e ekt s b et et e ebe e et e abennere s 19

A.11.2 SPAISE ATTAYS ...eeieeeiieureste ittt sttt ettt et r s e st b ke e bt e s e e e b e e e R R e R R e Rt e s e R R R R R e Rt Rt et r et Re e nne 19
412 AUTIDULE SCOPES...ceeeueitie ettt sttt bttt h e b b e bt bt bt b e e b e e Rt e R b e b e eb e ke ebeeb e e be e s b e ee e besbeebeebeeneeneennennas 19
413 REAU-ONIY IMOUES ...ttt bbbttt h et et e st b e bt e bt e b e e Rt e nb e et e b e sbeebeebeeneereennentan 20
A LA ZIVIOUES ...ttt bbb bbb bk R bR E bR £ R bR £ AR R £ AR R AR bR £ kb £ bbbt et 20
T O O (o N0 01 o [T SO OSSPSR 20
4,16 OPErationNal LIMILSccviiiiiiiieieiece ettt sttt st te et e et e e e et et e b e besbe et e eReeseeseesbesbesbeeteeneeneenrennn 20
4.17 Limits of Names and Other CharaCter StHNGScccveciiiiiieie et n e sr e 21
4.18 Backward File Compatibility With CDF 2.7coooeiiie ettt sne s 21

5 Standard Interface (Original).........ccccooiiiiiiiiciic e 23
LTS R O B - U 1 o3 - (- OSSPSR 23

511 EXBMPIE(S) + vttt bbbt bbbk bbb bbb bbb bbbttt 24

5.2 CDF_ar_BNIIY INQUITE ..ottt b e bbbt b bbb bbb bbbt 24
521 =011 o] <] () OSSPSR 25
LT R O B - 1 1 g o) SOOI 26
531 =011] <] () OSSR PR USSP 26
LT O | 4 1o [0 1T (PSSR 27
54.1 e 100101 (=T () USSR 28
55 (645] =1 £ 0180 R TSP UPPP 29
55.1 T 100] 0] L= () USSR 29
LT T O 5 T - U 1 o SO SPSRPRR 30
5.6.1 e 100] 0] L= () S 31
A OB | 1 g (=10 0[O P RO U TPV PR PRSPPI 31
57.1 EXBMPIE(S) + vttt bbbtk bbb b bR bbbt b bbbt b et 32
LR T O B T o] (o1 TSSO ORPRR 32
5.8.1 =011 o] <] () OSSPSR 33
5.9 (61D] ol (T L PRSP 33
59.1 100101 (=T () SRS 34
LT O O B Lo U= 1= TSSOSO 35
TN 0 R 1101 o 1= () IS 35
T8 R O T o (oo OSSR USSP 35
TN I R 1211 o] 1= () PSS 36
LT I O I T -1 ¢ o] OSSOSO 37
B.L2. L EXAMPIE(S) vttt sttt ettt bbbt bbb bR bbb bbbt bt 37
5.13 CDF_QetrVarsrECONAUALAcovereevirtiriitirteiiete sttt ettt ettt bttt b bbbt e st b e bbb bbbt nans 38
B.LB L EXAMPIE(S) wuveueiteieiiite ettt bbbt bbb bR bR bbb h ettt bt 39
5.14 CDF_QetZVaArSIECONTUALA.veiteeieeuiereeiete ettt ettt bbb et b e et e b e e b e b e b e et e e st ese e ee b e s besbeebeeneeneennennas 40
TN O R - 1111 o] 1= () OSSOSO P USROS 40
LT T O T 11 o[0T (TSSOSO 42
TN TN B ot 1101 o] 1= () IS 43
LI R I O B o o] 1< o P TP PP TPR PRI 43
TN 0 A ot 1101 o] 1= () IS 44
LT A O L o TV (Y7 V£ £=ToT o1 (o o = L SR 44
TN 0 R T 1111 o] 1= () PSSR 45
5.18 CDF_PULZVAISIECOTTUUALA. .. .veveieetieeieiteeei ettt bbbt b bbb bbbt bbbt nb e 46
B.LB.L EXAMPIE(S) wuveueteieiiite ittt ettt bbb bbb bbbttt b 47
51O O _VAI_ClOSE ...tttk b b bbb bbb bbb bbbt bt bbb et 48
T S R - 1111 o] 1= () TSRO PR PR ORTT 49
L OF B o V- ol (T LT SR SURRR 49
I R - 1111 o] 1=) OSSOSO PR URURTP 50
LA R O B o V- L o - P PSP PPTTPRPPPTR 51
ST I R 5 11101 o] 1= () IS 51
Iy B Y -V 11V o o - USSR 52
oI R ;1111 o] 1= () SO 53
LT T O Y - VS 01/ 0T g o U S PRSS 54
oI 0 R T 1111 o] 1= () I PSS 55
B.24 CDF_VAI_INQUITE ..ottt ettt h et b et eb et h b bbbt £ b £ bbbt bbbt bbbt bbb bbb bbbt 56
B.24. 1 EXAMPIE(S) wuveuetirieiiite itttk ettt bbb bbb bbbttt b 57
525 CDF _VAI _NUM .ttt h bbb s e s et b bR bt bt b et e e e n e bt r et e e e e nn 57
I R - 1111 o] 1= () USSP URURORTT 58
I I O B LV T o 11| SO TSP TP SR T PO PPTUPTPRRPRO 59
I R - 1111 o] 1= () TSSOSO PR URURORTP 59
L A O B o - g (=] =T o= PPPTPPPRTRN 60
I R 5 1101 o] 1= () IS 60

6 Standard INterface (NEW) ... 63

G T0 R I o] -1 TSP TP OO PP SO PR U S OOPRT PR POPRTPPORPPPRPN 63

6.1.1 CDF_get_0atalyPe_SIZE ...cveuiiuiieeiiiteiteieete etttk b et b et b ettt b etk eb etk sb et et b e et e arenrere s 64
LG O R =401 o] (=T) T OO TSSOSO UUTTSRPROR 64
6.1.2 CDF_get_lID_ COPYIIGNT. ...ttt b e et b e et b e eb e snenrene e 64
B.1.2. 1. EXAMIPIE(S) -ttt h bR E bR bR R R R R bRt e Rt Rt bbb et eene et 65
6.1.3 CDF_gEt_lI0 VEISION ..ottt b et b e bbb et b e et arenrere s 65
LT T O 40T o] (=T () TSRS 66
6.1.4 CDF _gBt STALUS_TEXE.....eitiiiieieeiieee sttt bbb e e ar et n e r e nnea 66
LT O 40T o] (=T () TSSOSO 66
T O I | ST PSRPRS 67
6.2.1 CDF _ClIOSE_COT ...ttt bbbt e b bbbt bt e b et et e sbesbenbesbe et e e e anbeneens 67
LT S =5 110] o] (=T () T OO SO U U TP OSTTSOPROR 68
6.2.2 CDF_CrEate_COF ...t b bbbt b et b e bttt b e et e b et e anenrere 68
B.2.2. 1. EXAMIPIE(S) - ettt ettt bR R bR b e R R R R bRt h e Rt bt E e b e nr e ne et 69
6.2.3 CDF _delete_CF ...t b et bbbt b et b et r e ene 69
B.2.3. 1. EXAMIPIE(S) - ettt bbb R E bR bR R Rt R R bR e Rt Rt bt b e b et eene et 70
6.2.4 CDF _gBE_CACNESIZE ...ttt b bbbt b bbbt ekt bttt e bttt b ettt abeneene s 70
LT R 3 140T o] (=T () TSSOSO 70
6.2.5 CDF_get_COMPIESS_CACNESIZE ... ecuiiteiictiiteet ettt b et b e et sbenrere s 71
LT T O 3 1401 o] (=T () TSSOSO 71
6.2.6 CDF _gBt_COMPIESSION ...ttt ettt ettt et b et b e ekt b e bbb b e bt e bt ekt eb e e ekt sb et et e e b e e et e abenrereas 72
L TG TO c 1a0T o] (=T () TSRS 72
6.2.7 CDF_get_COMPIESSION_INTO.....ccuiiiiiiiiieiiie ettt eb et b e et b e et b nrene s 73
LT 0 R 3 120T o] (=T () TSSOSO 73
6.2.8 CDF _gBt_COPYIIGNT ... ittt bbb bbb bbbt b e e bt eb e et e b e e ebe b nnere s 74
L T R o 1a0T o] (=T () TSSOSO 74
6.2.9 (@3 o T=) o (<ol Lo I o SRS 75
LT T R o 1a0T o] (=T () TSSOSO 75
oI L I O 1o = AT oo T [] o PSS 75
6.2.10.1. T L0010 [=T () OSSR 76
T2 5 R O 1o T g o] 1L PSS 76
6.2.11.1. T Ta 0] o] [=T () SRR 77
I A o T o T 40T o 1Y 77
6.2.12.1. T Ta 0] o] [=T () USSR 77
LT R O I | o 1= A 0 o - OSSPSR 78
6.2.13.1. T Ta 0] o] [=T () SRS 78
6.2.14 CDF_get negtopoSTPO _MOUE.ciuiieiieieeieiee sttt sttt st st neen e e e ensere e e eneees 79
6.2.14.1. T Ta 0] o] [=T () SO RSR 79
I LT O B T o) =T o [0 0] Y/ 1 o [PSS 79
6.2.15.1. T Ta 0] o] [=T () ST RSR 80
6.2.16 CDF_(et_StAgE CACNESIZE....cecviiiieiiteitesie ettt st e e st e st e be s be e te et et e sb e bestesbesteaneeree e et es 80
6.2.16.1. T Ta 0] o] [=T () ST 81
oI I A O T o - =T Y (o] o IS 81
6.2.17.1. T Ta 0] o] [=T () ST 82
T T O T o - 4 10T [PPSR 82
6.2.18.1. T Ta 0] o] [=T () ST 82
oI e T O T 1 o [0 LTI oo | PSS 83
6.2.19.1. G Laa] o] [=T () ISR 84
ST O B T o T=1 o T o | PSS 84
6.2.20.1. G Laa] o] [=T () OSSPSR 85
I R O B | Y- o Uot 011 PSS 85
6.2.21.1. G Laa] o] [=T () ISP 86
6.2.22 CDF_SEt_COMPIESS_CACNESIZE ...c.viveviieiieetieeeieiteste e ste sttt et st et e be st e e teese e s e e st e beseesbesteeneeteeneeneees 86
6.2.22.1. G Laa] o] [=T () ISR 87
6.2.23 CDF_SEBL_COMPIESSION ...vevietieteeieiestestestestes e eseeaessestesresbesteaaeeseessessesaesbesbesbeeteaseessessenteseeseestesneaseeseeneenes 87
6.2.23.1. G Laa] o] [=T () ISR 88
6.2.24 CDF _SEL UBCOAINGo viteite ittt e bbbt bt he e e e b e b sb e e b e e bt eb e e seemeebesbesbeeneebe e e e b ee 88

6.2.24.1. G Laa] o] [=T () OSSPSR 88

6.2.25 CDF _SBL BNCOUINGteeeieiteieieite ettt bbbt b e bbb bt bbbt bbbt bbb bt 89

6.2.25.1. T L0010 [=T () OSSR 89
B.2.26 CDF _SBL_TOMMAL......i ittt bbbttt bbb bbb et b bbbttt 90
6.2.26.1. Nt Ta 0] o] [=T () OSSR 90
6.2.27 CDF _SBL MAJOFILY .. ecveteiieteieeiete ettt bbbttt b etk b et b et et b et bbbt 91
6.2.27.1. T L0010 [=T () OSSR 91
6.2.28 CDF_set_NegtopoSTPO_MOGEc..ciiiiieiiiie ettt ettt 91
6.2.28.1. e Ta 0] o] [=T () OSSR 92
6.2.29 CDF_Set _readonly MOGE.......cccuiieieiiieriese st st et ettt e et e be b e reeneesae e e testesresreaneereeneeneees 92
6.2.29.1. L Taa] o] [=T () OSSO 93
6.2.30 CDF_Set_Stage CACNESIZEcvveveieieeitesiesie ettt sttt e et et beste s e e e e s e e e bestesresreaneereeneeneees 93
6.2.30.1. Nt Ta 0] o] [=T () OO TTSUSR 94
I N R O I 1S 1 o [PSS 94
6.2.31.1. L Ta 0] o] [=T () OSSR 94
8.3 VAITADIE ... e E bt b e R bt bt bt b e bttt e e b nrereas 95
6.3.1 CDF _ClOSE_ZVA ...tttk b ettt et b e e h bt bbb b bt e bt bbbt e bt e b e et e b e bt arenr b 95
LT T O 40T o] (=T () TSSOSO 95
6.3.2 CDF_CONTINM_ZVAI_EXISTEINCEeeitiiteecteste ettt et et b bbb et b e ettt ne et abeneere s 96
L I S 1401 o] (=T () TSRS 96
6.3.3 CDF_confirm_zvar_padvalUg _EXIST.......c.cierereiiriieiisesieeieseese st e ettt sre e ere e e eneeneens 97
Lo I T O T 1401 o] (=T () TSSOSO 97
6.3.4 (O o (T (A - | G PR 97
LR I O 1401 o] (=T () TSSOSO 98
6.3.5 (O8] o 11) (A T S 100
[T T O T 1y 0T o] (=] () TSSOSOV 100
6.3.6 (O8] o L= (YA Y- L (- S 100
[T JL T O T 1y 0T o] [=T () TSSOSO 101
6.3.7 (O o o 01U A > €SS 101
LT T 0 O 3T 130T o] 1= () TSRS 102
6.3.8 (O o T V-V [0 OSSR 102
oI TO O e 1y 0T o] 1= () TSRS 103
6.3.9 CDF_get_vars MaXWItENIECNUMScveeeieieriestesestesreseeseesaessesteseessesseeseessesseseessessesseeseessensessessensenes 103
ORI IO O T 14T o] [=T () TSSOSO 104
T N L I O T o - A7 T -] (ool (oSS 104
6.3.10.1. e Ta 0] o] [=T () SO SO PR 105
6.3.11 CDF_get zvar bloCKINGTACIOrcciieiiciecc e r e e e 105
6.3.11.1. Nt Ta 0] o] [=T () OSSR 106
TN I O B 1o) Az T o7 (o 111 4= PSS 106
6.3.12.1. e Ta 0] o] [=T () OO SSRSO PR 107
6.3.13 CDF_(BL ZVAr COMPIESSION ...cvviuviviiteiteiteeteeeestestestestestestesseaseesee e estesaessestesteateeseeseeseensesteseestesseeseessenses 107
6.3.13.1. G La 0] o] [=T () ISR 108
T TN S o B 1o =) Az | o - - PSS 108
6.3.14.1. G La 0] o] [=T () ISP 109
T TN LT OB] o 1 Az o - v 11/ o TSRS 110
6.3.15.1. G La 0] o] [=T () TSSOSO 110
6.3.16 CDF_gEL ZVAI AIMSIZES ..ecuecvievieieieite st st ete et sr e e et te e te et et e s ee st e s besbeeteene e s b e e e besbesresteeneeneeseennas 111
6.3.16.1. G La 0] o] [=T () ISR 111
6.3.17 CDF_get_ZVar dIMVAITANCESccveiveiviiteiieeteeeeieiteste e s e s e s e e e e et e stestesbestesbeetaeseesaeseesbesbesreeteaneeseeseennas 111
6.3.17.1. G La 0] o] [=T () ISR 112
6.3.18 CDF_get_zvar maXallOCIrBCNUIMoiiiiiiitiite sttt ettt b et bbb b e e e e e 112
6.3.18.1. G La 0] o] [=T () ISP 113
6.3.19 CDF_get_zvar MaXWIITEENTECIUMciiiiiiiie et sie st etee e ettt sbe st e e e e e e e b sbesbesbesbe e e e e e eeseennas 113
6.3.19.1. G La 0] o] [=T () ISP 114
6.3.20 CDF _gBL ZVAI NAIMIE... ..ottt ettt ettt ettt st e b e e bt e sbe e b e e st e sae e ebe e bt et e esbeebeesbeesbeesbeenbeaneenneenns 114
6.3.20.1. G La 0] o] [=T () ISP 114
6.3.21 CDF_get_ZVAI NUMOIMS ..ottt sttt e bbb b et bt e e e b et sbesbesbeabe e e et aneennenas 115
6.3.21.1. EXAMIPIE(S) -ttt bbb b b e R Rt R b b et h e bbbt ne e 115

6.3.22 CDF_get ZVAr NUMEIEMSeiiiiiite ittt et b et b e e e e e e be b e sbe et e et eneennenas 116

6.3.22.1. e Ta 0] o] [=T () OSSPSR 116

6.3.23 CDF_get_zvar NUMIECS_WIITEEN.couiiiiitiiiiiteiet sttt 117
6.3.23.1. e Ta 0] o] [=T () ISP SRRSO PR 117
I I B OB | o 1 QA7 L 0= 10 17 |10 1= OSSR 118
6.3.24.1. T L0010 [=T () OSSR 118
I I T O B 1o =) G Az L (-TeTo] (o [0 - - RS 118
6.3.25.1. e Ta 0] o] [=T () SR URPTUS RS PRR 119
6.3.26 CDF _(BL ZVAI TBCVAMNANCE ... cvveveeeriestesteateereestetesees e stestesseaseeseeeeeesaestessesseateeseeseeseesesaeseesseaneeseesennses 119
6.3.26.1. T Ta 0] o] [=T () OSSR 120
6.3.27 CDF_get_ZVar_IESEIVEPEICENTeiiiestieiteeieeesieesieesteesee e e areesseesse e seenseeseesseesseesseesaeeseeaseesnessreensesneesnes 120
6.3.27.1. T Ta 0] o] [=T () OSSR 121
I I T OB] o) A7 T-To (o - - PSS 121
6.3.28.1. T Ta 0] o] [=T () OSSR 122
RGO B | e 1= A L =T | 0L 122
6.3.29.1. T Ta 0] o] [=T () TSP PR 123
6.3.30 CDF_get zvars_ mMaXWrittBNIECNUMcveiuertiertesteseeseeeeseeteseeste e saessesseeseeseeeeseeseessesressesseensesseseenses 123
6.3.30.1. T Ta 0] o] [=T () OO SSSRRSPR 124
6.3.31 CDF_(Bt ZVAr _SPAISEIECONUS. ... ccveiveivisieireeietitestestestesseeteeeesteseestestesaestesseesseseesesteseestesseeseeseesseseeseeses 124
6.3.31.1. T Ta 0] o] [=T () OSSPSR 125
RS VA O{ B 1o [QA S oo (0 o - WSS 125
6.3.32.1. e Ta 0] o] [=T () SO SO PR 126
6.3.33 CDF _hyper_get ZVAr data.........ccccoeiiiiiieiiiieiieie sttt e st e et e besteete e e esae e et e besrestesneeneeseeneas 127
6.3.33.1. Nt Ta 0] o] [=T () OSSR 128
RSV I O{ BTl)Y/ o 1= g o1V Az L« - - OSSPSR 129
6.3.34.1. G La 0] o] [=T () ISP 130
R T O B T [o[V LT A LSS 131
6.3.35.1. G La 0] o] [=T () TSROSO 132
I I O B T oV aiAY = G - L USRS 132
6.3.36.1. G La 0] o] [=T () ISP 133
RSV A O{ B 1 o[V AV =V g (=el0] (o [0 - - PSS 134
6.3.37.1. G La 0] o] [=T () ISP 134
6.3.38 CDF_PUL_ZVAr SEOUALA veitieteiieeiie ettt ettt ettt b e bt st e bt b e e s e et et sa e b e bt eneennenas 135
6.3.38.1. G La 0] o] [=T () ISP 135
6.3.39 CDF_PUL_ZVArS_FECONTUALA. eeveeerteiteiie ettt sttt e e bbbttt e s e e be b sbeebe st enee e nas 136
6.3.39.1. G La 0] o] [=T () ISP 137
ORI I O B o (=TT 10 1T AY - | PO PRPN 138
6.3.40.1. G La 0] o] [=T () ISP 138
6.3.41 CDF_set_zvar_alloChIOCKIECS.ccviiiieiieie et s re e e enes 139
6.3.41.1. EXAMIPIE(S) -ttt bbbt h b b e R Rt R R bR bRt Rt bbbt ne e 139
6.3.42 CDF _SEt ZVAI _@IIOCIECS......c.viiuiiitiiite ettt sttt e et e e e be e s te e be et e e saesraesteesteesreennesneeanns 140
6.3.42.1. EXAMIPIE(S) -ttt bbbt bbb R R h R b b et R bt bbbt be e 140
6.3.43 CDF_set_zvar _bIOCKINGTACIONc..iiiiiii e e 141
6.3.43.1. EXAMIPIE(S) etttk bbb b bR R bR R b e et h ekt b bttt e b e 141
6.3.44 CDF _SEt_ZVAI CACNESIZEcvviiviiiieicie ettt te et e et e e e s be e st e et e e st e e baesteesbeesteesreeeesnneanns 142
6.3.44.1. EXAMIPIE(S) -ttt bbbt h b b e R Rt R R bR bRt Rt bbbt ne e 142
6.3.45 CDF_SEl_ZVAI _COMPIESSION......eiitiiteitieteeieeteeeete et stestesbeebes e eseeseesbesbesbe st e e beebeeseenbesbesbesbesbeebeeseeneaneeneennas 143
6.3.45.1. EXAMIPIE(S) -ttt bbbt h b b e R Rt R R bR bRt Rt bbbt ne e 143
6.3.46 CDF _SEt ZVAr_TALASPECieeiiriiieiirteieit sttt ettt bbbt b bbbttt 144
6.3.46.1. EXAMIPIE(S) -ttt bbb b b e R Rt R b b et h e bbbt ne e 144
6.3.47 CDF_Set_zvar_JiMVAITANCESc.eiveiiitiieiiiteieeisie ettt bbbt bbb bbbt b et 145
6.3.47.1. EXAMIPIE(S) -ttt bbb b b e R Rt R b b et h e bbbt ne e 145
6.3.48 CDF_Set_ZVar_INIIAITECSeviiiieiieiitce bbbttt 146
6.3.48.1. e Ta 0] o] [=T () ISR 146
6.3.49 CDF_SEt_ZVAr_PAGVAIUE ..ottt bbb bbbttt 147
6.3.49.1. e Ta 0] o] [=T () OSSPSR 147
6.3.50 CDF _SEBt ZVAr_TECVAMNANCE ..e.eeuitireetiiteieiist ettt ettt bbbttt bttt b et 148
6.3.50.1. e Ta 0] o] [=T () OSSPSR 148
6.3.51 CDF_Set_ZVar _IESEIVEPEITENTeiuiiiiiiieiieiesr ettt sttt ettt sr b bt sr e e 149

6.3.51.1. e Ta 0] o] [=T () ISR 149

6.3.52 CDF _SBL ZVArS_CACNESIZEo.viuiiiiieieiitiect bbbttt 149

6.3.52.1. e Ta 0] o] [=T () OSSR 150
6.3.53 CDF _SBL_ZVAI_SEUPOS .. reveirieteeieesrertiar st sre sttt est et st r bbb e e e b s e b bt btk e e e e ne e n e b er bt 150
6.3.53.1. T Ta 0] o] [=T () OSSR 151
6.3.54 CDF _SEt_ZVAr_SPAISEIECOIUScuitiuiititiiitisteeet sttt bttt b bbbt bbbttt bbbt 151
6.3.54.1. e Ta 0] o] [=T () OSSR 152
T AN (|0 10 (=TT 1 1= USSR 152
6.4.1 CDF_CONFIrM_attr _EXISTENCEviieiee ettt ettt bbbttt 152
B.4. 1.1, EXAMPIE(S) ettt bbb E bR b £ R e bbb R b e Rt et h e bbb et re b 153
6.4.2 CDF_confirm_gentry _EXISTENCEeiveiriieiiteiieie sttt sttt sttt ettt be et 153
B.4.2. 1. EXAMPIE(S) 1 ettt h bR E bR b £ Rk b bR bR R e bt bt bbb et re b 154
6.4.3 CDF_CONFIrM_FeNtrY _EXISTENCE ...ocveiteieteiteiete ettt et b et ettt 154
LR T O T 1y 0T o] (=] () TSSOSOV 154
6.4.4 CDF_CONFIrM_ZENTIY EXISTEINCE.....c.iitiitiiieieiie ettt ettt ettt sb et 155
LR O T 1401 o] (=] () TSSOSOV 155
6.4.5 CDF _ CrALE AN ...ttt bbb bbb r e 156
LR T O e 1y 0T o] (=] () TSRV 156
6.4.6 CDF _dIBTE AL ...ttt bbbt bbbtk b ettt b etk bt bbbt 157
LR G T0 O T a1 o] (=] () TSRSV 157
6.4.7 (O] o[- (Y- Lt g0 =] 1 Y2 158
LR O T 1y o] (=] () T OSSR 158
6.4.8 (OB o[- oy I V(=] 1] S 159
LR TR O T 1y 0T o] (=] () TSRS 159
6.4.9 (OB o L= (I Lt =] €S 160
LR T O e 1y 0T o] (=] () TSSOSOV 160
LR O O | o 1= - Vg o =T 01 1 Y2 161
6.4.10.1. T Ta 0] o] [=T () OSSOSO 161
6.4.11 CDF_get attr_gentry datatyPeccccvcveieeieierieresiesese e ee e ee e e et e e e e e e seestesresneereeneeneeneennas 162
6.4.11.1. T Ta 0] o] [=T () OSSR 162
6.4.12 CDF_get_attr gentry NUMEIEIMSc..ooiiieieiire sttt et sr e te e ena e e e saenenes 163
6.4.12.1. e Ta 0] o] [=T () SO SO PR 163
LR B OF | e 1= - Y g 44 DG =] 1 164
6.4.13.1. e Ta 0] o] [=T () SO SO PR 164
LR A Ot | o 1= - V(g 4 DG =] 011V 165
6.4.14.1. e Ta 0] o] [=T () SO SO PR 165
6.4.15 CDF _get At _MAX _ZENTIY c.viiiiiiiiie ittt b et e et e et e e e be e e be e et e e e nbaeebe e s beeenbee s 166
6.4.15.1. Nt Ta 0] o] [=T () OSSR 166
IR I O B T o o T - 4 g -1 1[I PSSR R PSPPI 166
6.4.16.1. e Ta 0] o] [=T () OO SSRSO PR 167
IR A O B o o =1 - 1 g 1 PPN R PSPPI 167
6.4.17.1. G La 0] o] [=T () ISR 168
6.4.18 CDF_get_attr NUM _gENIIIES .ocveiiiieieeite ettt sttt et e s besae et e e se e s e e seesbesbesbeeteeneeneeseennas 168
6.4.18.1. G La 0] o] [=T () ISP 169
6.4.19 CDF_get_attl NUM L TBNTIES....ciiiiieiieites ettt ettt e et a et et te st e beebeete e e e sbeseesbesbesbeereeneeseeseennas 169
6.4.19.1. G La 0] o] [=T () TSSOSO 170
6.4.20 CDF_get_attr NUM _ZENTIIES .oovviieieiieites et ettt sttt e et st e st e be st e e teeseesae e et e sbesbestesneereeseennas 170
6.4.20.1. G La 0] o] [=T () ISR 170
IR S R O B e o = - (= 0 PP PPN 171
6.4.21.1. G La 0] o] [=T () ISR 172
6.4.22 CDF_get_attr_rentry JatatyPe......coeieieeieeeeeeie ettt sttt bbb bt eneenne e 172
6.4.22.1. G La 0] o] [=T () ISP 173
6.4.23 CDF_get_attr rentry NUMEIEMSc.eiiiii ettt et bbbt e e e 173
6.4.23.1. G La 0] o] [=T () ISP 174
B.4.24 CDF _gBE BT SCOPE. . e teeteeteeute ettt e bt e bt ettt e bt e bt e sbe ekt e st e ehe e e bt e ebe et e e st e ea b e sh e e nb e e ebeebeesbeabnesbeenbeeneenneanns 174
6.4.24.1. G La 0] o] [=T () ISP 175
B.4.25 CDF_QBL I ZBNTIY .o eiieiiiie ittt ettt b et e e b e e e e s ae e e bt e eb e et e e st e eb b e sb e e nbeesbeeebeeneenneenns 175
6.4.25.1. EXAMIPIE(S) -ttt bbb b b e R Rt R b b et h e bbbt ne e 176

6.4.26 CDF_get_attr Zentry aAtYPEcoooiieiieieiie ettt et bbb s e 177

6.4.26.1. e Ta 0] o] [=T () OSSPSR 177

6.4.27 CDF_get_attr_zentry NUMEIEIMS.ccuiiiiiiiiitieeiiste ettt 178
6.4.27.1. e Ta 0] o] [=T () ISP SRRSO PR 178
R I O | o 1= 10 4L TR 179
6.4.28.1. T L0010 [=T () OSSR 179
6.4.29 CDF _gEL NUML_QALEIS .. .iiiieeeeieie ettt bbb bbbt s e r b sb e bbbt b et esnennenes 180
6.4.29.1. e Ta 0] o] [=T () SR URPTUS RS PRR 180
RO I O | e 1= A o100 a7 L1 S 180
6.4.30.1. T Ta 0] o] [=T () OSSR 181
ORI R O T 1 o [0 1T 4 PSS 181
6.4.31.1. T Ta 0] o] [=T () OSSR 182
6.4.32 CDF _INQUITE_AHE _GENTIY ..ottt bbbt b et b et nb ettt 183
6.4.32.1. T Ta 0] o] [=T () OSSR 184
6.4.33 CDF _INQUITE AT TENTIY ..ecuiceieiice ettt ettt e ettt st eene e e e e e eeseesbesreeneereaneeneeneenns 185
6.4.33.1. T Ta 0] o] [=T () TSP PR 185
6.4.34 CDF_INQUITE_ AT ZENIIY ..ouievieeicie ettt sttt st se s e e e e teseestesneeneeneaneeneeneennn 186
6.4.34.1. T Ta 0] o] [=T () OO SSSRRSPR 187
IR e LT O B o o[V = U1 £ o [=] 01 £ Y PRSP ROT R PPRPTN 188
6.4.35.1. T Ta 0] o] [=T () OSSPSR 188
IR LI O B T o o1V - U | g (=] 11 Y PRSP OPRPTN 189
6.4.36.1. e Ta 0] o] [=T () SO SO PR 190
IR A O B o o[V - U1 | 4= 011 O PSP P OPRPTN 190
6.4.37.1. Nt Ta 0] o] [=T () OSSR 191
I e 1 N O B o (=TT 10 o[- L (O RO P PSPPI 192
6.4.38.1. EXAMPIE(S) vttt bbbt b bbbt bbb R bR b bR bbbt bbbt 192
6.4.39 CDF_Set_attr_gentry _GALASPECeivevirueriiiiriiieisteisesie ettt sttt be st st se st stesbeneees 192
6.4.39.1. G La 0] o] [=T () TSROSO 193
6.4.40 CDF_Set_attr_rentry dataSPECcccieieieeieieeieiieste e ste e s e ste e et et e e st e tesbesteeseesae e e besbesresteaneeneeseenns 193
6.4.40.1. G La 0] o] [=T () ISP 194
IR R O B et = 1 (oo o[PS PRSP ROPRPTN 194
6.4.41.1. EXAMPIE(S) vttt ettt bbb b bR bbb bR bbbt bbbt 195
6.4.42 CDF_Set_attr_Zentry atASPEC......cueouiiirieiiieieiieiie ettt sttt ettt et bttt st et e b e b sbesbesbeeneesnenas 195
6.4.42.1. G La 0] o] [=T () ISP 196

7 Internal Interface — CDF_LIDccoovviiiiiic e 197
7.1 1011 0] (<] () OO USSP 197
7.2 CUrrent ODJeCtS/STALES (ITEIMS)ouiiiiieitieieii ettt bbbttt et b b e besbe b e b e bt ene e e e b e 199
7.3 REIUINEA STALUS ..ottt sttt st b et b et b e st e b et s b e bt e ke b et e e be e e st et st et e be st et e be st e e 202
A 1 To (T) =1 1014V Y/ =SSOSR 203
STV 11 b QOSSOSO PO 203
7.5.1 MACINEOSN, IMPWV FOPIIAN ..ottt ettt bbbttt b e 204
AL T @ 1= - €[3OS 205
A A Y (o] - =T U3 0]] 1TSS 265
7.7.1 L0 1-T L1 T o TSRS 265
7.7.2 zVariable Creation (CharaCter DAta TYPE)ccerveiiirieiiierieiesie ettt be b sneneereas 265
7.7.3 Hyper Read With SUDSAMPIING.......ceiiiiiie et 266
7.7.4 ATIDULE RENAIMING ...t bbbt bttt e e e e b e bt b et e st eneennenas 267
7.7.5 SEOUENTIAT ACCESS. ... ettt ettt ettt b ekttt et et b e b e bt e b et e st e nb e eb e e b e e Rt e b e e e enbenbeabenbeabe et e aneannennens 267
7.7.6 ATLIDULE TENTIY WIS, .. oo itiiieie ettt sttt et st e st e s teeae e b e et et e sbesbesbeeneenaenenes 268
7.7.7 MUIIPIE ZVATTADIE WIILE ...t re s te e srees 269

8 Interpreting CDF Status COdESccccoiiiiiiiiieiierie e 271
9 EPOCH ULty ROULINEScviiiiiiiieciie e 273
9.1 COMPUEE_EPOCH ... et e et e e b et e e et e e e be e et e e s bee e be e s beeenbee s 273
LS = = 104 o o] 7 1o (o) o P TOSOSRSSN 274

0.3 ENCOUE _EPOCH ...ttt b b et b e bbbt b e bbbt b e et b e bt bennene s 274
0.4 eNCOUE _EPOCHIL ...ttt et b e et b e bt eb e s bt b e bt b e e bt eb e et e b e et e b nrene s 274
LS T - o (oo o T = @ 1O OSSPSR 275
LS - o (ot o T = @ 10 TSRS 275
LS - o (o0 Yo (T = @ 1O b OSSPSR 275
9.8 PAISE_EPOCH ...ttt bbbt b e e nbe e beenbee et 276
9.9 PAISE_EPOCHIoiiiie ittt e b bbbt ab e b e nbr e e aeenrre e e 276
0.10 PAISE_EPOCHZ ... ittt et E bbbt Rt e e r e e 277
LS o 1St = o T PR 277
9.12 COMPUEE_EPOCHILEei ettt te e s s e sae e teeneeenaeen e e st e e steesteesteenteeeeaneeanes 277
LS IR T = =0 T T o (==L (o o 1o PSSR 278
0.14 eNCOUE EPOCHILG ...c.ocviiiiictiiteete ettt ettt ettt sttt st b e e b et et e ebe s e te e b et ebeebe st etesbe st eteebeseeseebeneereas 278
0.15 eNCOOE EPOCHILE L ...coiiiiicieiieicie ittt sttt sttt sttt b e s e et et e se et e b e b e et e st etesbe st et e ebeseeteabeneerens 278
9.16 €NCOUE _EPOCHILE 2 ...cuiiuiieiiiieieieite ettt sttt sttt e sb e s e besb e s e ebe st e s e e besbe s e ebenbereabeseeteebeseesenbenenrens 279
9.17 eNCOUE _EPOCHILEB 3iiiiiieiiiieieie ittt sttt sttt st et e s b seebe st e s e ebe st e s e e besae s e ebeneeteabeseeteebeseeteabenenrens 279
0.18 ENCOUE _EPOCHILB X c.eiviiuiieieiieieiiitesietestestetesteseetestesestestesaetessesestesaesasbesbesaabesseseabesbeseabeseeseabeseeteabeseeresseseesens 279
0.19 PAISE_EPOCHILE ...ttt ettt et b e et b et E e bt R e bt E e b et e b et e b et e benrere s 280
0.20 PArSE_EPOCHILE L ...c.oiiiiiieiiiieieie ettt sttt sttt ettt b et et e e b et et e eb et e b e e bt beebe et e b et e benrere s 281
0.21 PArSE_EPOCHILE 2 ...c.ociiiiiieiiiieiete sttt sttt b et b et b e et b et b e bt be b et be et e b nrere s 281
LS o LSt = o @ T O o T PR 281
APPENAIX A .ot eaa e e ae e nreearee e 282
N R 1011 10 o [0 To1 T o OSSOSO TSP TR 282
A2 StatuS COUES QNG IMIESSAQES. ... veveerrereerrereertisiesteateseaseeseeseetestessessesseaseaseeseeseessessessessesseaseeseesessessessesnseneessenses 282
APPENAIX B ..ot are e 291
B.1 Standard INterface (OFigINAL)ccooiiiiiiiiiice bbbt b et 291
B.2 Standard INErFACE (MEW)c.oiiiiieieiiieiet ettt bbbttt bbb 297
B.3 INTEINAL INTEITACEvieieeie ettt ae e st e et e et e e st e sbaesteesbe e beebesaeesaeesbeenbeenbeens 312
B.4 EPOCH ULHLY ROULINES ..ottt bbbtttk sttt 319

Chapter 1

1 Compiling

Each program, subroutine, or function that calls the CDF library or references CDF parameters must include one or
more CDF include filess. On VMS systems a logical name, CDF$INC, that specifies the location of the CDF include
filess is defined in the definitions files, DEFINITIONS.COM, provided with the CDF distribution. On UNIX systems
(including Mac OS X) an environment variable, CDF_INC, that serves the same purpose is defined in the definitions
files definitions.<shell-type> where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for
the Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This section assumes that you are using the
appropriate definitions files on those systems. The location of cdf.inc is specified as described in the appropriate
sections for those systems.

On VMS and UNIX systems the following line would be included at/near the top of each routine:
INCLUDE *"<inc-path>cdf.inc*

where <inc-path> is the files name of the directory containing cdf.inc. On VMS systems CDF$INC: may be used for
<inc-path>. On UNIX systems <inc-path> must be a relative or absolute files name. (An environment variable may
not be used.) Another option would be to create a symbolic link to cdf.inc (using In -s) making cdf.inc appear to be in
the same directory as the source files to be compiled. In that case specifying <inc-path> would not be necessary. On
UNIX systems you will need to know where on your system cdf.inc has been installed.

The cdf.inc include files declares the FUNCTIONS available in the CDF library (CDF var num, CDF lib, etc.). Some
Fortran compilers will display warning messages about unused variables if these functions are not used in a routine
(because they will be assumed to be variables not function declarations). Most of these Fortran compilers have a
command line option (e.g., -nounused) that will suppress these warning messages. If a suitable command line option is
not available (and the messages are too annoying to ignore), the function declarations could be removed from cdf.inc
but be sure to declare each CDF function that a routine uses.*

Digital Visual Fortran®

On Windows NT/2000/XP systems using Digital Visual Fortran, the following lines would be included at the top of
each routine/source files:

- (PROGRAM, SUBROUTINE, or FUNCTION statement)

! Normally, you need to run DFVARS.BAT in bin directory to set up the proper environement from the command
prompt.

INCLUDE "cdfdvf.inc”
INCLUDE "cdfdf.inc"

The include files cdfdvf.inc contains an INTERFACE statement for each subroutine/function in the CDF library.
Including this files is absolutely essential no matter if you are using the Internal Interface (CDF lib) or Standard

Interface (e.g., CDF create, etc.) cdfdvf.inc is located in the same directory as cdf.inc. The include file cdfdf.inc is
similar to cdfdf.inc, with some statements commented out for Digital Visual Fortran compiler.

1.1 VMS/OpenVMS Systems

An example of the command to compile a source file on VMS/OpenVMS systems would be as follows:
$ FORTRAN <source-name>

where <source-name> is the name of the source file being compiled. (The .FOR extension is not necessary.) The
object module created will be named <source-name>.0BJ.

NOTE: If you are running OpenVVMS on a DEC Alpha and are using a CDF distribution built for a default double-

precision floating-point representation of D_FLOAT, you will also have to specify /FLOAT=D_FLOAT on the CC
command line in order to correctly process double-precision floating-point values.

1.2 UNIX Systems

An example of the command to compile a source file on UNIX flavored systems would be as follows:?
% 77 -c <source-name>._T
where <source-file>.f is the name of the source file being compiled. (The .f extension is required.)

The -c option specifies that only an object module is to be produced. (The link step is described in Chapter 2.) The
object module created will be named <source-name>.o.

1.3 Windows NT/2000/XP Systems, Digital Visual Fortran

An example of the command to compile a source file on Windows NT/95/98 systems using Digital Visual Fortran
would be as follows:*

> DF /c /iface:nomixed_strfilesn_arg /nowarn /optimize:0 /I<inc-path> <source-name>.F

% The name of the Fortran compiler may be different depending on the avor of UNIX being used.
® This example assumes you have properly set the MS-DOS environment variables used by the Digital Visual Fortran
compiler.

where <source-name>.f is the name of the source file being compiled (the .f extension is required) and <inc-path> is
the file name of the directory containing cdfdvf.inc and cdfdf.inc. You will need to know where on your system
cdfdvf.inc and cdfdf.inc have been installed. <inc-path> may be either an absolute or relative file name.

The /c option specifies that only an object module is to be produced. (The link step is described in Chapter 2.) The
object module will be named <source-name>.obj.

The /iface:nomixed str len arg option specifies that Fortran string arguments will have their string lengths appended to
the end of the argument list by the compiler.

The /optimize:0 option specifies that no code optimization is done. We had a problem using the default optimization.
The /nowarn option specifies that no warning messages will be given.

You can run the batch files, DFVARS.BAT, came with the Digital Visual Fortran, to set them up.

Chapter 2

2 Linking

Your applications must be linked with the CDF library.! Both the Standard and Internal interfaces for C applications
are built into the CDF library. On VMS systems a logical name, CDFS$LIB, which specifies the location of the CDF
library, is defined in the definitions file, DEFINITIONS.COM, provided with the CDF distribution. On UNIX systems
(including Mac OS X) an environment variable, CDF_LIB, which serves the same purpose, is defined in the definitions
file definitions.<shell-type> where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for
the Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This section assumes that you are using the
appropriate definitions file on those systems. On MS-DOS and Macintosh (MacOS) systems, definitions files are not
available. The location of the CDF library is specified as described in the appropriate sections for those systems.

21 VAX/VMS & VAX/OpenVMS Systems

An example of the command to link your application with the CDF library (LIBCDF.OLB) on VAX/VMS and
VAX/OpenVMS systems would be as follows:

$ LINK <object-file(s)>, CDF$LIB:LIBCDF/LIBRARY
where<object-file(s)> is your application's object module(s). (The .OBJ extension is not necessary.) The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the [EXECUTABLE qualifier.

It may also be necessary to specify SYS$SLIBRARY:VAXCRTL/LIBRARY at the end of the LINK command if your
system does not properly define LNK$LIBRARY (or LNK$LIBRARY_1, etc.).

2.2 DEC Alpha/OpenVMS Systems

! A shareable version of the CDF library is also available on VMS and some flavors of UNIX. Its use is described in
Chapter 3. A dynamic link library (DLL), LIBCDF.DLL, is available on MS-DQOS systems for Microsoft and Borland
Windows applications. Consult the Microsoft and Borland documentation for details on using a DLL. Note that the
DLL for Microsoft is created using Microsoft C 7.00.

An example of the command to link your application with the CDF library (LIBCDF.OLB) on DEC Alpha/OpenVMS
systems would be as follows:

$ LINK <object-file(s)>, CDF$LIB:LIBCDF/LIBRARY, SYS$LIBRARY:<crtl>/LIBRARY

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT
or VAXCRTLD for a default of D_FLOAT. (You must specify a VAX C run-time library because the CDF library is
written in C.) The name of the executable created will be the name part of the first object file listed with .EXE
appended. A different executable name may be specified by using the [EXECUTABLE qualifier.

2.3 UNIX Systems

An example of the command to link your application with the CDF library (libcdf.a) on UNIX flavored systems would
be as follows:

% F77 <object-file(s)>.o ${CDF_LIB}/libcdf.a

where <object-file(s)>.0 is your application's object module(s). (The .o extension is required.) The name of the
executable created will be a.out by default. It may also be explicitly specified using the —o option. Some UNIX
systems may also require that -lc (the C run-time library), -Im (the math library), and/or -ldl (the dynamic linker
library) be specified at the end of the command line. This may depend on the particular release of the operating system
being used. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified instead of
${CDF_LIB}.

2.3.1 Combining the Compile and Link

On UNIX systems the compile and link may be combined into one step as follows:

% F77 <source-file(s)>.f ${CDF_LIB}/libcdf.a

where <source-file(s)>.f is the name of the source file(s) being compiled/linked. (The .f extension is required.) Some
UNIX systems may also require that -Ic, -Im, and/or -1dl be specified at the end of the command line. Note that in a
“makefile™ where CDF_LIB is imported, $(CDF_LIB) would be specified instead of ${CDF_LIB}.

2.4 Windows NT/2000/XP Systems, Digital Visual Fortran

NOTE: Even though your application is written in Fortran and compiled with a Fortran compiler, compatible C run-
time system libraries (as supplied with Microsoft Visual C++) will be necessary to successfully link your application.
This is because the CDF library is written in C and calls C run-time system functions.

An example of the command used to link an application to the CDF library (LIBCDF.LIB) on Windows NT/95/98
systems using Digital Visual Fortran and Microsoft Visual C++ would be as follows:?

% This example assumes you have properly set the MS-DOS environment variables (e.g., LIB should be set to include
directories that contain C's LIBC.LIB and Fortran's DFOR.LIB.)

> LINK <objs> <lib-path>libcdf.lib /out:<name.exe> /nodefaultlib:libcd

where <objs> is your application's object module(s) (the .obj extension is necessary); <name.exe> is the name of the
executable file to be created and <lib-path> is the file name of the directory containing LIBCDF.LIB. You will need to

know where on your system LIBCDF.LIB has been installed. <lib-path> may be either an absolute or relative file
name.

The /nodefaultlib:libcd option specifies that the LIBCD.LIB is to be ignored during the library search for resolving
references.

Chapter 3

3 Linking Shared CDF Library

A shareable version of the CDF library is also available on VMS systems, some flavors of UNIX®, Windows NT/95/98°
and Macintosh.® The shared version is put in the same directory as the non-shared version and is named as follows:

Machine/Operating System Shared CDF Library
VAX (VMS & OpenVMS) LIBCDF.EXE
DEC Alpha (OpenVMS) LIBCDF.EXE
Sun (SOLARIS) libcdf.so

HP 9000 (HP-UX)* libcdf.sl

IBM RS6000 (AIX)* libcdf.o

DEC Alpha (OSF/1) libcdf.so

SGi (6.x) libcdf.so
Linux (PC & Power PC) libcdf.so
Windows NT/2000/XP dllcdf.dll
Macintosh OS X* Libcdf.dylib

The commands necessary to link to a shareable library vary among operating systems. Examples are shown in the
following sections.

31 VAX (VMS & OpenVMS)

$ ASSIGN CDF$LIB:LIBCDF.EXE CDF$LIBCDFEXE
$ LINK <object-file(s)>, SYS$INPUT:/OPTIONS
CDF$L 1BCDFEXE/SHAREABLE

! On UNIX systems, when executing a program linked to the shared CDF library, the environment variable
LD _LIBRARY_PATH must be set to include the directory containing libcdf.so or libcdf.sl.

2 When executing a program linked to the dynamically linked CDF library (DLL), the environment variable PATH
must be set to include the directory containing dllicdf.dll.

® On Mac systems, when executing a program linked to the shared CDF library, dllcdf.ppc or dllcdf.68k must be copied
into System's Extension folder.

* Not yet tested. Contact CDFsupport@listserv.gsfc.nasa.gov to coordinate the test.

SYS$SHARE : VAXCRTL/SHAREABLE
<Control-Z>
$ DEASSIGN CDF$LIBCDFEXE

where<object-file(s)> is your application's object module(s). (The .OBJ extension is not necessary.) The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the [EXECUTABLE qualifier.

NOTE: on VAX/VMS and VAX/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE.
If that is the case, the link command would be as follows:

$ LINK <object-file(s)>, SYS$INPUT:/OPTIONS
SYS$SHARE : LIBCDF/SHAREABLE
SYS$SHARE : VAXCRTL/SHAREABLE
<Control-z>

3.2 DEC Alpha (OpenVMS)

$ ASSIGN CDF$LIB:LIBCDF.EXE CDFS$LIBCDFEXE
$ LINK <object-File(s)>, SYS$INPUT:/OPTIONS
CDFS$LIBCDFEXE/SHAREABLE
SYS$LIBRARY :<crtl>/LI1BRARY
<Control-Z>
$ DEASSIGN CDF$LIBCDFEXE

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT
or VAXCRTLD for a default of D_FLOAT or VAXCRTLT for a default of IEEE_FLOAT. (You must specify a VAX
C run-time library [RTL] because the CDF library is written in C.) The name of the executable created will be the
name part of the first object file listed with .EXE appended. A different executable name may be specified by using the
/EXECUTABLE qualifier.

NOTE: on DEC Alpha/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE. If that is
the case, the link command would be as follows:

$ LINK <object-File(s)>, SYS$INPUT:/OPTIONS
SYS$SHARE : L 1BCDF/SHAREABLE

SYS$LIBRARY :<crtl>/LI1BRARY
<Control-zZ>

33 SUN (SOLARIS)

% F77 -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.so -Ic -Im
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

10

3.4 HP 9000 (HP-UX)

% 77 -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.sl -Ic -Im
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

35 1BM RS6000 (AlIX)

% F77 -0 <exe-file> <object-file(s)>.o0 -L${CDF_LIB} ${CDF_LIB}/libcdf.o -Ic -Im
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.6 DEC Alpha (OSF/1)

% F77 -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.so -Im -Ic
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

37 SGi (IRIX 6.X)

% F77 -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.so -Im -Ic
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.8 Linux (PC & Power PC)

% g77 -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.so -Im -Ic
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

11

3.9 Windows (NT/2000/XP)

% link /out:<exe-file>_.exe <object-file(s)>.obj <lib-path>dllcdf.lib
/nodefaultlib:libcd

where <object-file(s)>.obj is your application's object module(s) (the .obj extension is required) and <exe-file>.exe is
the name of the executable file created, and <lib-path> may be either an absolute or relative directory name that has
dllcdf.lib. The environment variable LIB has to set to the directory that contains LIBC.LIB. Your PATH environment
variable needs to be set to include the directory that contains dllcdf.dll when the executable is run.

12

Chapter 4

4 Programming Interface

The following sections describe various aspects of the Fortran programming interface for CDF applications. These
include constants and types defined for use by all CDF application programs written in Fortran. These constants and
types are defined in cdf.inc. The file cdf.inc should be INCLUDEed in all application source files referencing CDF
routines/parameters.

4.1 Argument Passing

The CDF library is written entirely in C. Most computer systems have Fortran and C compilers that allow a Fortran
application to call a C function without being concerned that different programming languages are involved. The CDF
library takes advantage of the mechanisms provided by these compilers so that your Fortran application can appear to
be calling another Fortran subroutine/function (in actuality the CDF library written in C). Pass all arguments exactly as
shown in the description of each CDF function. This includes character strings (i.e., %REF(...) is not required). Be
aware, however, that trailing blanks on variable and attribute names will be considered as part of the name. If the
trailing blanks are not desired, pass only the part of the character string containing the name (e.g., VAR NAME(1:8)).

NOTE: Unfortunately, the Microsoft C and Microsoft Fortran compilers on the IBM PC and the C and Fortran
compilers on the NeXT computer do not provide the needed mechanism to pass character strings from Fortran to C
without explicitly NUL terminating the strings. Your Fortran application must place an ASCII NUL character after the
last character of a CDF, variable, or attribute name. An example of this follows:

CHARACTER ATTR_NAME*9 I Attribute name
ATTR_NAME(1:8) = "VALIDMIN*® I Actual attribute name
ATTR_NAME(9:9) = CHAR(O) I ASCI1 NUL character

CHAR(O0) is an intrinsic Fortran function that returns the ASCII character for the numerical value passed in (0 is the
numerical value for an ASCII NUL character). ATTR_NAME could then be passed to one of the CDF library
functions.

13

When the CDF library passes out a character string on an IBM PC (using the Microsoft compilers) or on a NeXT
computer, the number of characters written will be exactly as shown in the description of the function called. You must
declare your Fortran variable to be exactly that size.

4.2 Item Referencing

For Fortran applications all items are referenced starting at one (1). These include variable, attribute, and attribute
entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are
numbered starting at one (1).

4.3 Status Code Constants

These constants are of type INTEGER*4.
CDF_OK A status code indicating the normal completion of a CDF function.
CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 8 describes how to use these constants to interpret status codes.

4.4 CDF Formats

SINGLE_FILE The CDF consists of only one file. This is the default file format.

MULTI_FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

4.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF BYTE 1-byte, signed integer.
CDF_CHAR 1-byte, signed character.
CDF_INT1 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF_UINT1 1-byte, unsigned integer.

14

CDF_INT2 2-byte, signed integer.

CDF_UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.
CDF_UINT4 4-byte, unsigned integer.
CDF_REAL4 4-byte, floating point.
CDF_FLOAT 4-byte, floating point.
CDF_REALS 8-byte, floating point.
CDF_DOUBLE 8-byte, floating point.
CDF_EPOCH 8-byte, floating point.
CDF_EPOCH16 two 8-byte, floating point.

CDF_CHAR and CDF_UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character).

NOTE: When using a DEC Alpha running OSF/1 keep in mind that a long is 8 bytes and that an int is 4 bytes. Use int
C variables with the CDF data types CDF_INT4 and CDF_UINT4 rather than long C variables.

NOTE: When using an PC (MS-DOS) keep in mind that an int is 2 bytes and that a long is 4 bytes. Use long C
variables with the CDF data types CDF_INT4 and CDF_UINT4 rather than int C variables.

4.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

NETWORK_ENCODING Indicates network transportable data representation (XDR).

VAX_ENCODING Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D_FLOAT representation.

ALPHAVMSd _ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's D_FLOAT
representation.

15

ALPHAVMSg ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT
representation.

ALPHAVMSi_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

ALPHAOSF1_ENCODING Indicates DEC Alpha running OSF/1 data representation.

SUN_ENCODING Indicates SUN data representation.

SGi_ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ENCODING
Indicates DECstation data representation.

IBMRS_ENCODING Indicates IBMRS data representation (IBM RS6000 series).
HP_ENCODING Indicates HP data representation (HP 9000 series).
PC_ENCODING Indicates PC data representation.

NeXT_ENCODING Indicates NeXT data representation.

MAC_ENCODING Indicates Macintosh data representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST_ENCODING.

When inquiring the encoding of a CDF, either NETWORK_ENCODING or a specific machine encoding will be
returned. (HOST_ENCODING is never returned.)

4.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK_DECODING Indicates network transportable data representation (XDR).

VAX_DECODING Indicates VAX data representation. Double-precision floating-point

values will be in Digital's D_FLOAT representation.
ALPHAVMSd_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in Digital's D_FLOAT
representation.

16

ALPHAVMSg DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G_FLOAT
representation.

ALPHAVMSi_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

ALPHAOSF1_DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.

SGi_DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING Indicates DECstation data representation.

IBMRS_DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP_DECODING Indicates HP data representation (HP 9000 series).

PC_DECODING Indicates PC data representation.

NeXT_DECODING Indicates NeXT data representation.

MAC_DECODING Indicates Macintosh data representation.

The default decoding is HOST_DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT_,CDF_DECODING_> operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST_DECODING may be desired.

4.8 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVVariable and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default majority.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

17

As with hyper reads and writes, the majority of a CDF's variables affects multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For Fortran applications the compiler defined majority for arrays is column major. The first dimension of multi-
dimensional arrays varies the fastest in memory.

4.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY True record or dimension variance.

NOVARY False record or dimension variance.
If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the
same values.)
If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If

the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

4.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set.

NO_COMPRESSION No compression.

RLE_COMPRESSION Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length

encoding of zeros is supported. This parameter must be set to
RLE_OF_ZEROs.
HUFF_COMPRESSION Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL_ENCODING_TREES.

AHUFF_COMPRESSION Adaptive Huffman compression. There is one parameter.

18

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL_ENCODING_TREES.

GZIP_COMPRESSION Gnu's “zip" compression.> There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the

least compression and requires less execution time. 9 provides the

most compression but requires the most execution time. Values in-
between provide varying compromises of these two extremes.

4.11 Sparseness

4111 Sparse Records

The following types of sparse records for variables are supported.
NO_SPARSERECORDS No sparse records.

PAD_SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when

reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

4.11.2 Sparse Arrays

The following types of sparse arrays for variables are supported.?

NO_SPARSEARRAYS No sparse arrays.

4.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL_SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).

! Disabled for PC running 16-bit DOS/Windows 3.x.
2 Obviously, sparse arrays are not yet supported.

19

VARIABLE_SCOPE Indicates that an attribute's scope is by-variable. (Each rEntry or zEntry
corresponds to an rVariable or zVariable, respectively.)

4.13 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT_,CDF_READONLY_MODE_> operation.

READONLYon Turns on read-only mode.
READONLY off Turns off read-only mode.
4.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT_,CDF_zMODE_> operation.

zMODEoff Turns off zMode.
zMODEon1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

4.15 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via the Internal Interface using the <SELECT ,CDF_NEGtoPOSfp0_MODE_> operation.

NEGtoPOSfpOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfpOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

4,16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF_MAX_DIMS Maximum number of dimensions for the rVVariables or a zVariable.

CDF_MAX_PARMS Maximum number of compression or sparseness parameters.

20

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. On
the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

4.17 Limits of Names and Other Character Strings

CDF_PATHNAME_LEN Maximum length of a CDF file name (excluding the .cdf or .vnn appended
by the CDF library to construct file names). A CDF file name may
contain disk and directory specifications that conform to the conventions
of the operating systems being used (including logical names on VMS
systems and environment variables on UNIX systems).

CDF_VAR_NAME_LEN256 Maximum length of a variable name.
CDF_ATTR_NAME_LEN256 Maximum length of an attribute name.
CDF_COPYRIGHT_LEN Maximum length of the CDF copyright text.
CDF_STATUSTEXT_LEN Maximum length of the explanation text for a status code.

4,18 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.%, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A new Fortran
subroutine, CDF_set_FileBackward, can be called to control the backward compatibility from an application before a
CDF file is created (i.e. CDF _create CDF). This subroutine takes an argument to control the bacward file
compatibility. Passing a flag value of BACKWARDFILEon, defined in cdf.inc, to the subroutine will cause new
files to be backward compatible. The created files are of version VV2.7.2, not V3.*. This option is useful for those who
wish to create and share files with colleagues who still use a CDF V2.6 or V2.7 library. If this option is specified, the
maximum file is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff, also defined in cdf.inc, will use
the default file creation mode and new files created will not be backward compatible with older libraries. The created
files are of version 3.* and thus their file sizes can be greater than 2G bytes. Not calling this function has the same
effect of calling the function with an argument value of BACKWARDFILEOoff.

The following example uses the Internal Interface routine to create two CDF files: “MY_TEST1.cdf” is a V3.1 file
while “MY_TEST2.cdf” a V2.7 file. Alternatively, the Standard Interface routine CDF_create_ CDF can be used for
the file creation.

include ‘cdf.inc’

integerss idd, id2; /* CDF identifier. */

21

integer*4 status; /* Returned status code. */
integer*4 numbDims = 0; /* Number of dimensions. */
integer*4 dimSizes[1] = {0}; /* Dimension sizes. */

status = CDF_lib (CREATE_, CDF_, “MY_TEST1”, numDims, dimSizes, &id1,
NULL _, status);
if (status .It. CDF_OK) call UserStatusHandler (status);

call CDF_set_FileBackward(BACKWARDFILEon);

status = CDF_lib (CREATE_, CDF_, “MY_TEST2”, numDims, dimSizes, &id2,
NULL _, status);

if (status .It. CDF_OK) call UserStatusHandler (status);

Another method is through an environment variable and no function call is needed (and thus no code change involved
in any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and
Windows, or CDF$FILEBACKWARD on Open/VMS, is used to control the CDF file backward compatibility. If its
value is set to “TRUE”, all new CDF files are backward compatible with CDF V2.7 and 2.6. This applies to any
applications or CDF tools dealing with creation of new CDFs. If this environment variable is not set, or its value is set
to anything other than “TRUE”, any files created will be of the CDF 3.* version and these files are not backward
compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file comaptibility. If both methods are used, the
subroutine call through CDF_set_FileBackward will take the precedence over the environment variable.

You can use the CDF_get FileBackward subroutine to check the current value of the backward-file-compatibility
flag. It returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

include ‘cdf.inc’

integer*4 flag; /* CDF identifier. */

flag = CDF_get_FileBackward():

22

Chapter 5

5 Standard Interface (Original)

The following sections describe the original Standard Interface routines callable from Fortran applications. Most
functions return a status code of type INTEGER*4 (see Chapter 8). The Internal Interface is described in Chapter 7.
An application can use both interfaces when necessary.

These routines have been available since earlier CDF versions. Very limited access to zVariables is available here and
there is no access to entries associated with zVariable. While they are still supported in the VV3.* library, a new set of

Standard Interface routines is made available to complement this limited list. Those routines are described in the
Chapter 6.

5.1 CDF_attr_create

SUBROUTINE CDF _attr_create (

INTEGER*4 id, ! in -- CDF identifier.

CHARACTER attr_name*(*), 1in -- Attribute name.

INTEGER*4 attr_scope, I'in -- Scope of attribute.

INTEGER*4 attr_num, ! out -- Attribute number.
]

INTEGER*4 status) ! out -- Completion status

CDF_attr_create creates an attribute in the specified CDF. An attribute with the same name must not already exist in
the CDF.

The arguments to CDF_attr_create are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

attr_name The name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN256
characters. Attribute names are case-sensitive.

attr_scope The scope of the new attribute. Specify one of the scopes described in Section 4.12.

23

attr_num The number assigned to the new attribute. This number must be used in subsequent CDF
function calls when referring to this attribute. An existing attribute's number may be
determined with the CDF_attr_num function.

status The completion status code. Chapter 8 explains how to interpret status codes.

51.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

iNCLUDE "<path>cdf.inc"

INTEGER*4 1id I CDF identifier.

INTEGER*4 status I Returned status code.
CHARACTER UNITS attr_name*5 I Name of "Units" attribute.
INTEGER*4 UNITS attr_num I "Units"™ attribute number.
INTEGER*4 TITLE attr_num I "TITLE"™ attribute number.
INTEGER*4 TITLE_attr_scope I "TITLE"™ attribute scope.

DATA UNITS_attr_name/"Units"/, TITLE attr_scope/GLOBAL_ SCOPE/

CALL CDF_attr_create (id, "TITLE", TITLE attr_scope, TITLE attr_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_attr_create (id, UNITS attr_name, VARIABLE SCOPE, UNITS attr_num,

1 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

5.2 CDF_attr_entry _inquire

SUBROUTINE CDF _attr_entry_inquire (

in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).
out -- Completion status

INTEGER*4 id, !
INTEGER*4 attr_num, !
INTEGER*4 entry_num, !
INTEGER*4 data_type, !
INTEGER*4 num_elements, !
INTEGER*4 status) !
CDF_attr_entry_inquire is used to inquire about a specific attribute entry. to inquire about the attribute in general, use
CDF _attr_inquire (see Section 5.4). CDF _attr_entry_inquire would normally be called before calling CDF_attr_get in
order to determine the data type and number of elements (of that data type) for an entry. This would be necessary to
correctly allocate enough memory to receive the value read by CDF_attr_get.

24

The arguments to CDF _attr_entry_inquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

attr_num The attribute number for which to inquire an entry. This number may be determined
with a call to CDF_attr_num (see Section 5.5).

entry_num The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

data_type The data type of the specified entry. The data types are defined in Section 4.5.
num_elements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

52.1 Example(s)

The following example inquires each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between one (1) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable
numbers.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 attr_n

INTEGER*4 entryN

CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)

CDF identifier.
Returned status code.
Attribute number.
Entry number.
Attribute name.

INTEGER*4 attr_scope Attribute scope.

INTEGER*4 max_entry Maximum entry number used.

INTEGER*4 data_type Data type.

INTEGER*4 num_elems Number of elements (of the
data type).

attr_n = CDF_attr_num (id, “TMP*®)

IF (attr_n .LT. 1) CALL UserStatusHandler (attr_n) ! If less than one (1),

I then it must be a
I warning/error code.

CALL CDF_attr_inquire (id, attr_n, attr_name, attr_scope, max_entry, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

DO entryN

= 1, max_entry

CALL CDF_attr_entry_inquire (id, attr_n, entryN, data_type, num _elems,

1

IF (status .LT. CDF_OK) THEN

ELSE

IF (status .NE. NO_SUCH_ENTRY) CALL UserStatusHandler (status)

C (process entries)

END
END DO

IF

5.3 CDF_attr_get

SUBROUTINE CDF _attr_get (

INTEGER*4 id, !'in -- CDF identifier.

INTEGER*4 attr_num, I'in --attribute number.

INTEGER*4 entry_num, 1in -- Entry number.

<type> value, I out -- Value (<type> is dependent on the data type of the enrty).
]

INTEGER*4 status)

out -- Completion status

CDF_attr_get is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDF_attr_entry_inquire before calling CDF _attr_get in order to determine the data type and number of elements (of
that data type) for the entry.

The arguments to CDF_attr_get are defined as follows:

id

attr_num

entry_num

value

status

5.3.1

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

The attribute number. This number may be determined with a call to CDF_attr_num (see
Section 5.5).

The entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

The value read. This buffer must be large enough to hold the value. The function
CDF _attr_entry_inquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

26

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES_LVL

rVariable (but only if the data type is CDF_CHAR).

INCLUDE *<path>cdf. inc"

INTEGER*4 id
INTEGER*4 status
INTEGER*4 attr_n
INTEGER*4 entryN
INTEGER*4 data_type
INTEGER*4 num_elems
CHARACTER buffer*100

CDF identifier.
Returned status code.
Attribute number.
Entry number.

Data type.

attr_n = CDF_attr_Num (id, “UNITS®)

IF (attr_n .LT. 0) CALL UserStatusHandler (attr_n) !
1
1

entryN = CDF_var_num (id, "PRES_LVL") !
!

IF (entryN .LT. 0) CALL UserStatusHandler (entryN) !

Number of elements (of data type).
Buffer to receive value (in this case it is
assumed that 100 characters is enough).

IT less than one (1),

I then i1t must be a

warning/error code.

The rEntry number is
the rvariable number.

IT less than one (1),

I then 1t must be a

warning/error code.

CALL CDF_attr_entry_inquire (id, attr_n, entryN, data_type, num _elems,

1 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

IF (data_type .EQ. CDF_CHAR) THEN

CALL CDF_attr_get (id, attr_n, entryN, buffer, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

WRITE (6,10) buffer(1:num_elems)
10 FORMAT (* ",A)
END IF

54 CDF_attr_inquire

SUBROUTINE CDF _attr_inquire (

INTEGER*4 id,

INTEGER*4 attr_num,

CHARACTER attr_name*(CDF_ATTR_NAME_LEN256),
INTEGER*4 attr_scope,

INTEGER*4 max_entry,

INTEGER*4 status)

27

in -- CDF identifier.

in -- Attribute number.

out -- Attribute name.

out -- Attribute scope.

out -- Maximum gEntry or rEntry number.
out -- Completion status

CDF_attr_inquire is used to inquire about the specified attribute. to inquire about a specific attribute entry, use
CDF_attr_entry_inquire (Section 5.2).

The arguments to CDF_attr_inquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

attr_num The number of the attribute to inquire. This number may be determined with a call to
CDF_attr_num (see Section 5.5).

attr_name The attribute's name. This character string must be large enough to hold
CDF_ATTR_NAME_LENZ256 characters and will be blank padded if necessary.

attr_scope The scope of the attribute. Attribute scopes are defined in Section 4.12.

max_entry For gAttributes this is the maximum gEntry number used. For vAttributes this is the
maximum rEntry number used. in either case this may not correspond with the number of
entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDF _lib function (see Section 7). If no entries exist for the attribute,
then a value of zero (0) will be passed back.

status The completion status code. Chapter 8 explains how to interpret status codes.

54.1 Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDF _inquire. Note that attribute numbers start at one (1) and are consecutive.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 num_dims

INTEGER*4 dim_sizes(CDF_MAX_DIMS)

CDF identifier.

Returned status code.

Number of dimensions.
Dimension sizes (allocate to
allow the maximum number of
dimensions).

Data encoding.

Variable majority.

Maximum record number in CDF.
Number of variables in CDF.
Number of attributes in CDF.

INTEGER*4 encoding
INTEGER*4 majority
INTEGER*4 max_rec
INTEGER*4 num_vars
INTEGER*4 num_attrs

INTEGER*4 attr_n 1 Attribute number.
CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)! Attribute name.
INTEGER*4 attr_scope I Attribute scope.
INTEGER*4 max_entry I Maximum entry number.

CALL CDF_inquire (id, num_dims, dim_sizes, encoding, majority,
1 max_rec, num_vars, num_attrs, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

28

DO attr_n = 1, num_attrs
CALL CDF_attr_inquire (id, attr_n, attr_name, attr_scope, max_entry,
1 status)
IF (status .LT. CDF_OK) THEN I INFO status codes ignored.
CALL UserStatusHandler (status)
ELSE
WRITE (6,10) attr_name
10 FORMAT (" ",A)
END IF
END DO

5.5 CDF_attr num

INTEGER*4 FUNCTION CDF_attr_num (

INTEGER*4 id, lin-- CDF id
CHARACTER attr_name*(*)); !in-- attribute name

CDF_attr_num is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDF _attr_num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less than
zero (0).

The arguments to CDF_attr_num are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.
attr_name The name of the attribute for which to search. This may be at most

CDF_ATTR_NAME_LEN256 characters. Attribute names are case-sensitive.

CDF_attr_num may be used as an embedded function call when an attribute number is needed. CDF attr num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

55.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDF_attr_num being used
as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDF_attr_num
would have returned an error code. Passing that error code to CDF_attr_rename as an attribute number would have
resulted in CDF _attr_rename also returning an error code. CDF_attr_rename is described in Section 5.7.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

29

CALL CDF_attr_rename (id, CDF_attr_num(id, "pressure®), "PRESSURE", status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

5.6 CDF_attr_put

SUBROUTINE CDF_attr_put (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entry_num,
INTEGER*4 data_type,
INTEGER*4 num_elements,
<type> value,
INTEGER*4 status)

out -- Value (<type> is dependent on the data type of the enrty).
out -- Completion status

1'in -- CDF identifier.

1in -- Attribute number.

Iin -- Entry number.

I in -- Data type of this entry.

1'in -- Number of elements (of the data type).
|

]

CDF_attr_put is used to write an attribute entry to a CDF. The entry may or may not already exist. If it does exist, it is

overwritten. The data type and
entry.

number of elements (of that data type) may be changed when overwriting an existing

The arguments to CDF_attr_put are defined as follows:

id

attr_num

entry_num

data_type

num_elements

value

status

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

The attribute number. This number may be determined with a call to CDF_attr_num
(see Section 5.5).

The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

The data type of the specified entry. Specify one of the data types defined in Section
4.5,

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

The completion status code. Chapter 8 explains how to interpret status codes.

30

num_elements elements of the data type data_type will be written to the CDF starting from memory address value.

56.1 Example(s)

The following example writes two attribute entries. The first is to gEntry number one (1) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

INCLUDE "<path>cdf. inc"

PARAMETER TITLE_LEN = 10 ! Length of CDF title.

INTEGER*4 1id

INTEGER*4 status

INTEGER*4 entry_num
INTEGER*4 num_elements
CHARACTER title*(TITLE_LEN)
INTEGER*2 TMPvalids(2)

CDF identifier.

Returned status code.

Entry number.

Number of elements (of data type).

Value of TITLE attribute, rEntry number 1.
Value(s) of VALIDs attribute,

rEntry for rVariable TMP

DATA title/"CDF title."/, TMPvalids/15,30/

entry_num = 1

CALL CDF_attr_put (id, CDF_attr_num(id,"TITLE"), entry num, CDF_CHAR,
1 TITLE _LEN, title, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

num_elements = 2

CALL CDF_attr_put (id, CDF_attr_num(id, "VALIDs"), CDF_var_num(id, "TMP®),
1 CDF_INT2, num_elements, TMPvalids, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

5.7 CDF_attr_rename

SUBROUTINE CDF_attr_rename (

INTEGER*4 id,
INTEGER*4 attr_num,
CHARACTER attr_name*(*),
INTEGER*4 status)

1in -- CDF identifier.

1 in -- Attribute number.

1'in -- New attribute name

I out -- Completion status

CDF_attr_rename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

31

The arguments to CDF_attr_rename are defined as follows:

id

attr_num

attr_name

status

5.7.1

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

The number of the attribute to rename. This number may be determined with a call to
CDF_attr_num (see Section 5.5).

The new attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.
Attribute names are case-sensitive.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

1 CDF identifier.

INTEGER*4 status 1 Returned status code.

CALL CDF_attr_rename (id, CDF_attr_num(id, "LAT"), "LATITUDE", status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.8 CDF_close

SUBROUTINE CDF_close (

INTEGER*4 id,
INTEGER*4 status)

!'in -- CDF identifier.
! out-- Completion status

CDF_close closes the specified CDF. The CDF's cache buffers are ushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDF_close to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDF_close, the
CDF's cache buffers are left unushed.

The arguments to CDF_close are defined as follows:

id

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.

32

status

5.8.1

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example will close an open CDF.

INCLUDE *

<path>cdf.inc"
INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.
CALL CDF _close (id, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.9 CDF_create

SUBROUTINE CDF_create (

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CDF_name*(*), in -- CDF file name.

|
num_dims, lin -- Number of dimensions, rVariables.
dim_sizes(*), lin -- Dimension sizes, rVariables.
encoding, lin -- Data encoding.
majority, lin -- Variable majority.
id, ! out -- CDF identifier.
status) ! out -- Completion status

CDF_create creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing
CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDF_open, delete
it with CDF_delete, and then recreate it with CDF_create. If the existing CDF is corrupted, the call to CDF_open will
fail. (An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF
file (having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having

extensions of .vO0,

vl,...and .z0,z1,..).

The arguments to CDF_create are defined as follows:

CDF_name

The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

33

num_dims

dim_sizes

encoding

majority

id

status

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_MAX_DIMS.

The size of each dimension. Each element of dim_sizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this
argument is ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 4.6.

The majority for variable data. Specify one of the majorities described in Section 4.8.

The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

The completion status code. Chapter 8 explains how to interpret status codes.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDF_create is specified in the configuration file of your CDF distribution. Consult your system manager for this
default. The CDF _lib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDF_close must be used to close the CDF before your application exits to ensure that the CDF will
be correctly written to disk (see Section 5.8).

59.1 Example(s)

The following example will create a CDF named testl with network encoding and row majority.

INCLUDE "<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status
INTEGER*4 num_dims
INTEGER*4 dim_sizes(3)
INTEGER*4 majority

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables.
Variable majority.

DATA num_dims/3/, dim_sizes/180,360,10/, majority/ROW_MAJOR/

CALL CDF_create ("testl®, num_dims, dim_sizes, NETWORK_ENCODING,

1

majority, id, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

ROW_MAJOR and NETWORK_ENCODING are defined in cdf.inc.

34

5.10 CDF_delete

SUBROUTINE CDF_delete (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF_delete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf)
and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. .. and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDF_delete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.
status The completion status code. Chapter 8 explains how to interpret status codes.
5.10.1 Example(s)

The following example will open and then delete an existing CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_open ("test2", id, status)

IF (status .LT. CDF_OK) THEN I INFO status codes ignored.
CALL UserStatusHandler (status)

ELSE
CALL CDF _delete (id, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

END IF

5.11 CDF_doc

35

SUBROUTINE CDF_doc (

INTEGER*4 id, !
INTEGER*4 version, !
INTEGER*4 release, !
CHARACTER copy_right*(CDF_COPYRIGHT_LEN), !
INTEGER*4 status) !

in -- CDF identifier.
out -- Version number.
out -- Release number.
out -- Copyright.

out -- Completion status

CDF_doc is used to inquire general documentation about a CDF. The version/release of the CDF library that created
the CDF is provided (e.g., CDF V2.4 is version 2, release 4) along with the CDF copyright notice.

The arguments to CDF_doc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

copy_right The copyright notice of the CDF library that created the CDF. This character string must be

large enough to hold CDF_COPYRIGHT_LEN characters and will be blank padded if
necessary. This string will contain a newline character after each line of the copyright

notice.

status The completion status code. Chapter 8 explains how to interpret status codes.

The copyright notice is formatted for printing without modification. The version and release are used together (e.g.,

CDF V2.4 is version 2, release 4).

511.1 Example(s)

The following example will inquire and display the version/release and copyright notice.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 version

INTEGER*4 release

CHARACTER copyright*(CDF_COPYRIGHT_LEN)
INTEGER*4 last_char

INTEGER*4 start_char

CHARACTER I1f*1

CALL CDF _doc (id, version, release, copyright,

36

CDF identifier.

Returned status code.

CDF version number.

CDF release number.

I Copyright notice.

Last character position
actually used in the copyright.
Starting character position
ina line of the copyright.
Linefeed character.

status)

IF (status .LT. CDF_OK) THEN I INFO status codes ignored
CALL UserStatusHandler (status)

ELSE
WRITE (6,101) version, release
101 FORMAT (* *,"Version: ",13," Release:",13)
last_CHARACTER= CDF_COPYRIGHT_LEN
DO WHILE (copyright(last_char:last_char) .EQ. = *)
last_CHARACTER= last_CHARACTER- 1
END DO
1T = CHAR(10)
start_CHARACTER= 1
DO 1 = 1, last char
IF (copyright(i:i) -EQ. ITf) THEN
WRITE (6,301) copyright(start_char:i-1)

301 FORMAT (" *,A)
start_CHARACTER= i + 1
END IF
END DO
END IF

5.12 CDF_error

SUBROUTINE CDF _error (

INTEGER*4 status, I in -- Status code.
CHARACTER message*(CDF_STATUSTEXT_LEN)) I out -- Explanation text for the status code.

CDF_error is used to inquire the explanation of a given status code (not just error codes). Chapter 8 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDF_error are defined as follows:
status The status code to check.

message The explanation of the status code. This character string must be large enough to hold
CDF_STATUSTEXT_LEN characters and will be blank padded if necessary.

512.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDF_open.

INCLUDE *<path>cdf.inc"

37

INTEGER*4 id
INTEGER*4 status

CHARACTER text*(CDF_STATUSTEXT_LEN)

INTEGER*4 last_char

CDF identifier.

Returned status code.
Explanation text.

Last character position
actually used in the copyright.

CALL CDF_open (“giss_wetl®, id, status)
IF (status .LT. CDF_WARN) THEN I INFO and WARNING codes ignored.
CALL CDF_error (status, text)
last_CHARACTER= CDF_STATUSTEXT_LEN
DO WHILE (text(last char:last char) .EQ. " ©)
last_CHARACTER= last_CHARACTER- 1

END DO

WRITE (6,101) text(l:last_char)
101 FORMAT (* *,"ERROR> *,A)

END IF

5.13 CDF_getrvarsrecorddata

SUBROUTINE CDF_getrvarsrecorddata(

INTEGER*4 id, !
INTEGER*4 num_var !
INTEGER*4 var_nums(*) !
INTEGER*4 rec_num !
<type> buffer !

]

]

INTEGER*4 status

in -- CDF identifier.

in -- Number of rVariables.

in -- rVariable numbers.

in -- Record number.

out -- First variable buffer in a common block (<type> depends
on the data type of the rVariable).

out -- Completion status.

CDF_getrvarsrecorddata is used to read a full record data at a specific record number for a selected group of rVariables
ina CDF. It expects that the data buffer for each rVariable is big enough to hold a full physical record’ data and
properly put in a common block. No space is needed for each rVariable's non-variant dimensional elements. Retrieved
record data from the variable group is filled into respective rVariable's buffer.

The arguments to CDF_getrvarsrecorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the rVariables in the group involved this read operation.

var_nums The numbers of the rVariables involved for which to read a whole record data.

rec_num The record number at which to read the whole record data for the group of rVariables.
buffer The first variable buffer to read in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

! Physical record is explained in the Primer chapter in the CDF User's Guide.

38

5.13.1 Example(s)

The following example will read an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the read are Time, Longitude, Latitude and Temperature.
The record to read is 5. Since the dimension variances for Time are [NONVARY ,NONVARY], a scalar variable of
INTEGER*4 is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of REAL*4 is allocated
as its dimension variances are [VARY,NONVARY] with data type CDF_REALA4. A similar allocation is done for
Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For Temperature, a 2-
dimensional array of REAL*4 is allocated due to its [VARY,VARY] dimension variances and CDF_REAL4 data

type.

INCLUDE '<path>cdf.inc'

INTEGER*4 id | CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var I Number of rVariables.
INTEGER*4 var_nums(4) ! rVariable numbers in CDF.
INTEGER*4 rec_num I Record number to read.
INTEGER*4 time ! Datatype: INT4.

! Rec/dim variances: T/FF.
REAL*4 longitude(2) ! Datatype: REALA4.

! Rec/dim variances: T/TF.
REAL*4 latitude(2) I Datatype: REALA4.

! Rec/dim variances: T/FT.
REAL*4 temperature(2,2) ! Datatype: REALA4.

! Rec/dim variances: T/TT.
COMMON /BLK/time, longitude, latitude, temperature

num_var =4 ! Number of rVariables

rec_ num=5 ! Record number to read

var_nums(1) = CDF _var_num (id, 'Time") ! rVariable number

IF (var_nums(1) .LT. 1) 1If less than one (1),

1 CALL UserStatusHandler (var_nums(1)) I'then it is actually a
' warning/error code.

var_nums(2) = CDF_var_num (id, 'Longitude")

IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

var_nums(3) = CDF_var_num (id, 'Latitude")
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

var_nums(4) = CDF_var_num (id, "'Temperature")
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

CALL CDF_getrvarsrecorddata (id, num_var, var_nums, rec_num,

1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

39

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, 1-byte. Unexpected results may return if
such ordering is not followed. This function can be a replacement for the similar functionality provided from the
Internal Interface as <GET _, rVARs_ RECDATA >.

5.14 CDF_getzvarsrecorddata

SUBROUTINE CDF_getzvarsrecorddata(

INTEGER*4 id, !'in -- CDF identifier.

INTEGER*4 num_var 1in -- Number of zVariables.

INTEGER*4 var_nums(*) 1 in --zVariable numbers.

INTEGER*4 rec_num 1in -- Record number.

<type> buffer ! out -- First variable buffer in a common block (<type> depends
! on the data type of the zVariable).

INTEGER*4 status I out -- Completion status.

CDF_getzvarsrecorddata is used to read a full record data at a specific record number for a selected group of zVariables

ina CDF. It expects that the data buffer for each zVariable is big enough to hold a full physical record® data and

properly put in a common block. No space is needed for each zVariable's non-variant dimensional elements. Retrieved

record data from the variable group is filled into respective zVariable's buffer.

The arguments to CDF_getzvarsrecorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the zVariables in the group involved this read operation.

var_nums The numbers of the zVariables involved for which to read a whole record data.

rec_num The record number at which to read the whole record data for the group of zVariables.
buffer The first variable buffer to read in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

5.14.1 Example(s)

The following example will read an entire single record data for a group of zZVariables. The zVariables involved in the
read are Time, Longitude, Delta, Temperature and NAME. The record to read is 4. Since Temperature is 0-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for
their dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-
dimensional array of CHARACTER™*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR
data type with the numeber of element 10.

2 Physical record is explained in the Primer chapter in the CDF User's Guide.

40

INCLUDE '<path>cdf.inc'

INTEGER*4

id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time(3,2) ! Datatype: UINT4.

! Rec/dim variances: T/TT.
INTEGER*4 delta(3,2) ! Datatype: INT4 .

! Rec/dim variances: T/TT.
INTEGER*2 longitude(3) ! Datatype: INT2.

! Rec/dim variances: T/T.
REAL*4 temperature I Datatype: FLOAT.

! Rec/dim variances: T/.
CHARACTER*10 name(2) ! Datatype: CHAR/10.

! Rec/dim variances: T/T.

COMMON /BLK/delta, time, temperature, longitude, name

num_var =5
rec_num=4

I Number of zVariables
I Record number to read

status = CDF_LIB (GET_, zZVAR_NUMBER _, 'Delta’, var_nums(1),
1 NULL _, status) ! zVariable number
IF (var_nums(1) .LT. 1) 1If less than one (1),
X CALL UserStatusHandler (var_nums(1)) ! then it is actually a
! warning/error code.

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Time', var_nums(2),
1 NULL _, status)
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

status = CDF_LIB (GET_, zVAR_NUMBER _, 'Longitude', var_nums(3),
1 NULL_, status)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Temperature’, var_nums(4),
1 NULL _, status)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET_, zVAR_NUMBER_, 'NAME', var_nums(5),
1 NULL _, status)
IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var_nums(5))

CALL CDF_getzvarsrecorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, 1-byte. Unexpected results may return if

41

such ordering is not followed. This function can be a replacement for the similar functionality provided from the
Internal Interface as <GET_, zZVARs_RECDATA >.

5.15 CDF_inquire

SUBROUTINE CDF_inquire(

INTEGER*4 id,
INTEGER*4 num_dims,

INTEGER*4 dim_sizes(CDF_MAX_DIMS),

INTEGER*4 encoding,
INTEGER*4 majority,
INTEGER*4 max_rec,
INTEGER*4 num_vars,
INTEGER*4 num_attrs,
INTEGER*4 status)

I'in -- CDF identifier

! out -- Number of dimensions, rVariables.

! out -- Dimension sizes, rVariables.

! out -- Data encoding.

! out -- Variable majority.

I out -- Maximum record number in the CDF, rVariables.
! out -- Number of rVariables in the CDF.

I out -- Number of attributes in the CDF.

! out -- Completion status

CDF_inquire inquires the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data. Knowing the variable majority can be used to optimize
performance and is necessary to properly use the variable hyper functions (for both rVariables and zVariables).

The arguments to CDF_inquire are defined as follows:

id

num_dims

dim_sizes

encoding

majority

max_rec

num_vars
num_attrs

status

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

The number of dimensions for the rVariables in the CDF.

The dimension sizes of the rVariables in the CDF. dim_sizes is a 1-dimensional array
containing one element per dimension. Each element of dim_sizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 4.6.

The majority of the variable data. The majorities are defined in Section 4.8.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
max_rec is the largest of these. Some rVariables may have fewer records actually written.
CDF _lib (Internal Interface) may be used to inquire the maximum record written for an
individual rVariable (see Section 7).

The number of rVariables in the CDF.

The number of attributes in the CDF.

The completion status code. Chapter 8 explains how to interpret status codes.

42

5.15.1

Example(s)

The following example will inquire the basic information about a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CALL CDF_

id CDF identifier.
status Returned status code.
num_dims Number of dimensions, rVariables.

dim_sizes(CDF_MAX DIMS) Dimension sizes, rVariables
(allocate to allow the maximum

number of dimensions).

encoding Data encoding.

majority Variable majority.

max_rec Maximum record number.
num_vars Number of rVariables in CDF.
num_attrs Number of attributes in CDF.

inquire (id, num_dims, dim_sizes, encoding, majority,

max_rec, num_vars, num_attrs, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

5.16 CDF_open

SUBROUTINE CDF_open (

CHARACTER CDF_name*(*), 1 in -- CDF file name.
INTEGER*4 id, ! out-- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF_open opens

an existing CDF. The CDF is initially opened with only read access. This allows multiple

applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write
access to the CDF.)

The arguments to CDF_open are defined as follows:

CDF_name

The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

43

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

status The completion status code. Chapter 8 explains how to interpret status codes.

NOTE: CDF_close must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk (see Section 5.8).

5.16.1 Example(s)

The following example will open a CDF named NOAAL.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id
INTEGER*4 status

1 CDF identifier.
I Returned status code.

CHARACTER CDF_name*(CDF_PATHNAME_LEN) ! File name of CDF.

DATA CDF_name/"NOAA1*"/

CALL CDF_open (CDF_name, id, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.17 CDF_putrvarsrecorddata

SUBROUTINE CDF_putrvarsrecorddata(

INTEGER*4 id, !
INTEGER*4 num_var !
INTEGER*4 var_nums(*) !
INTEGER*4 rec_num !
<type> buffer !

]

]

INTEGER*4 status

in -- CDF identifier.

in -- Number of rVariables.

in -- rVariable numbers.

in -- Record number.

in -- First variable buffer in a common block (<type> depends
on the data type of the rVariable).

out -- Completion status.

CDF_putrvarsrecorddata is used to write a full record data at a specific record number for a selected group of
rVariables in a CDF. It expects that the data buffer for each zVariable is big enough to contain a full physical record
data and properly put in a common block. No space is expected for each rVariable's non-variant dimensional elements.
Record data from each buffer is written to its respective rVariable.

The arguments to CDF_putrvarsrecorddata are defined as follows:

44

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the rVariables in the group involved this write operation.

var_nums The numbers of the rVariables involved for which to write a whole record data.

rec_num The record number at which to write the whole record data for the group of rVariables.
buffer The first variable buffer to write in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

517.1 Example(s)

The following example will write an entire single record data for a group of rVVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the write are Time, Longitude, Latitude and Temperature.
The record to write is 5. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
INTEGER*4 is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of REAL*4 is allocated
as its dimension variances are [VARY,NONVARY] with data type CDF_REALA4. A similar allocation is done for
Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For Temperature, a 2-
dimensional array of REAL*4 is allocated due to its [VARY,VARY] dimension variances and CDF_REAL4 data

type.
INCLUDE '<path>cdf.inc'

INTEGER*4 id | CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of rVariables.
INTEGER*4 var_nums(4) ! rVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time /123/ ! Datatype: INT4.

! Rec/dim variances: T/FF.
REAL*4 longitude(2) ! Datatype: REALA4.
1 /100.01, -100.02/ ! Rec/dim variances: T/TF.
REAL*4 latitude(2) ! Datatype: REALA4.
1 [23.45, -54.32/ ! Rec/dim variances: T/FT.
REAL*4 temperature(2,2) ! Datatype: REALA4.
1 /20.0, 40.0, I Rec/dim variances: T/TT.
2 30.0, 50.0/

COMMON /BLK/time, longitude, latitude, temperature

num_var = 4 ! Number of rVVariables

rec_ num=>5 I Record number to write
var_nums(1) = CDF_var_num (id, 'Time") ! rVariable number

IF (var_nums(1) .LT. 1) 1If less than one (1),

1 CALL UserStatusHandler (var_nums(1)) I'then it is actually a

! warning/error code.
var_nums(2) = CDF_var_num (id, 'Longitude’)
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

45

var_nums(3) = CDF_var_num (id, 'Latitude")
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

var_nums(4) = CDF_var_num (id, "'Temperature')
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

CALL CDF_putrvarsrecorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, 1-byte. Unexpected results may return if
such ordering is not followed. This function can be a replacement for the similar functionality provided from the
Internal Interface as <PUT _, rIVARs_RECDATA >.

5.18 CDF_putzvarsrecorddata

SUBROUTINE CDF_putzvarsrecorddata(

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 num_var 1in -- Number of zVariables.

INTEGER*4 var_nums(*) I in --zVariable numbers.

INTEGER*4 rec_num I'in -- Record number.

<type> buffer 1 in -- First variable buffer in a common block (<type> depends
! on the data type of the zVariable).

INTEGER*4 status I out -- Completion status.

CDF_putzvarsrecorddata is used to write a full record data at a specific record number for a selected group of

zVariables in a CDF. It expects that the data buffer for each zVariable is big enough to contain a full physical record

data and properly put in a common block. No space is expected for each zVariable's non-variant dimensional elements.

Record data from each buffer is written to its respective zVariable.

The arguments to CDF_putzvarsrecorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the zVariables in the group involved this write operation.

var_nums The numbers of the zVariables involved for which to write a whole record data.

rec_num The record number at which to write the whole record data for the group of zVariables.
buffer The first variable buffer to write in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

46

5.18.1 Example(s)

The following example will write an entire single record data for a group of zVariables. The zVariables involved in the
write are Time, Longitude, Delta, Temperature and NAME. The record to write is 4. Since Temperature is 0-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for
their dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-
dimensional array of CHARACTER™*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR
data type with the numeber of element 10.

INCLUDE '<path>cdf.inc'

INTEGER*4 id | CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var I Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time(3,2) ! Datatype: UINT4.

1 /10, 20, ! Rec/dim variances: T/TT.
2 30, 40,

3 50, 60/

INTEGER*4 delta(3,2) ! Datatype: INT4 .

1 1, 2, ! Rec/dim variances: T/TT.
2 5, 6,

3 9, 10/

INTEGER*2 longitude(3) ! Datatype: INT2.

1 /10, 20, 30/ I Rec/dim variances: T/T.
REAL*4 temperature I Datatype: FLOAT.

1 /1234.56/ I Rec/dim variances: T/.

CHARACTER*10 name(2)

1
2

I'ABCDEFGHIJ,
'12345678'/

! Datatype: CHAR/10.
! Rec/dim variances: T/T.

COMMON /BLK/delta, time, temperature, longitude, name

num_var =5
rec num=4

I Number of zVariables
I Record number to write

status = CDF_LIB (GET_, zVAR_NUMBER _, 'Delta’, var_nums(1),
1 NULL _, status) I zVariable number
IF (var_nums(1) .LT. 1) 1 If less than one (1),
x CALL UserStatusHandler (var_nums(1)) ! then it is actually a
! warning/error code.

status = CDF_LIB (GET_, zZVAR_NUMBER_, 'Time', var_nums(2),
1 NULL _, status)
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

status = CDF_LIB (GET_, zVAR_NUMBER _, 'Longitude’, var_nums(3),

1 NULL_, status)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

47

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Temperature’, var_nums(4),
1 NULL_, status)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET_, zVAR_NUMBER_, 'NAME', var_nums(5),
1 NULL _, status)
IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var_nums(5))

CALL CDF_putzvarsrecorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, 1-byte. Unexpected results may return if
such ordering is not followed. This function can be a replacement for the similar functionality provided from the
Internal Interface as <PUT _, zZVARs_RECDATA >.

5.19 CDF _var close

SUBROUTINE CDF _var_close (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 var_num, Iin -- rVariable number.
INTEGER*4 status) ! out -- Completion status

CDF_var_close is used to close an rVariable in a multi-file CDF. This function is not applicable to single-file CDFs.
The use of CDF_var_close is not required since the CDF library automatically closes the rVariable files when a multi-
file CDF is closed or when there are insufficient file pointers available (because of an open file quota) to keep all of the
rVVariable files open. CDF_var_close would be used by an application since it knows best how its rVariables are going
to be accessed. Closing an rVariable would also free the cache buffers that are associated with the rVariable's file.
This could be important in those situations where memory is limited (e.g., the IBM PC). The caching scheme used by
the CDF library is described in the Concepts chapter in the CDF User's Guide. Note that there is not a function that
opens an rVariable. The CDF library automatically opens an rVariable when it is accessed by an application (unless it
is already open).

The arguments to CDF_var_close are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.
var_num The number of the rVariable to close. This number may be determined with a call to

CDF_var_num (see Section 5.25).

status The completion status code. Chapter 8 explains how to interpret status codes.

48

5.19.1 Example(s)

The following example will close an rVariable in a multi-file CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status

1 CDF identifier.
I Returned status code.

CALL CDF_var_close (id, CDF_var_num(id, "Flux®), status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.20 CDF_var_create

SUBROUTINE CDF _var_create (

INTEGER*4 id, ! in -- CDF identifier.

CHARACTER var_name*(*), 1in -- rVariable name.

INTEGER*4 data_type, I 'in -- Datatype.

INTEGER*4 num_elements, 1in -- Number of elements (of the data type).

INTEGER*4 rec_variance,

I in -- Record variance.

INTEGER*4 dim_variances(*), I'in -- Dimension variances.

INTEGER*4 var_num,

I out -- rVariable number.

CDF_var_create is used to create a new rVariable in a CDF. A variable (rVVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_var_create are defined as follows:

id

var_name

data_type

num_elements

rec_variance

dim_variances

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

The name of the rVariable to create. This may be at most CDF_VAR_NAME_LEN256
characters. Variable names are case-sensitive.

The data type of the new rVariable. Specify one of the data types defined in Section 4.5.
The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 4.9.

The rVariable's dimension variances. Each element of dim_variances specifies the
corresponding dimension variance. For each dimension specify one of the variances

49

defined in Section 4.9. For 0-dimensional rVVariables this argument is ignored (but must
be present).

var_num The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVVariable. An existing rVariables's number
may be determined with the CDF_var_num function.

status The completion status code. Chapter 8 explains how to interpret status codes.

5.20.1 Example(s)

The following example will create several rVariables in a CDF whose rVariables are 2-dimensional. In this case
EPOCH, LAT, and LON are independent rVariables, and TMP is a dependent rVariable.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH variable number.
LAT rVariable number.
LON rVariable number.
TMP rVariable number.

INTEGER*4 EPOCH_rec_vary
INTEGER*4 LAT_rec_vary
INTEGER*4 LON_rec_vary
INTEGER*4 TMP_rec_vary
INTEGER*4 EPOCH_dim_varys(2)
INTEGER*4 LAT dim_varys(2)
INTEGER*4 LON_dim_varys(2)
INTEGER*4 TMP_dim_varys(2)
INTEGER*4 EPOCH_var_num
INTEGER*4 LAT_var_num
INTEGER*4 LON_var_num
INTEGER*4 TMP_var_num

DATA EPOCH_rec_vary/VARY/, LAT_rec_vary/NOVARY/,
1 LON_rec_vary/NOVARY/, TMP_rec_vary/VARY/

DATA EPOCH_dim_varys/NOVARY ,NOVARY/, LAT dim_varys/NOVARY,VARY/,
1 LON_dim_varys/VARY,NOVARY/, TMP_dim_varys/VARY,VARY/

CALL CDF_var_create (id, "EPOCH", CDF_EPOCH, 1,
1 EPOCH_rec _vary, EPOCH dim varys, EPOCH var_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF _var_create (id, "LATITUDE", CDF_INT2, 1,

1 LAT rec vary, LAT dim_varys, LAT var_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_var_create (id, "LONGITUDE", CDF_INT2, 1,

1 LON_rec_vary, LON_dim_varys, LON_var_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_var_create (id, "TEMPERATURE®", CDF_REAL4, 1,

50

1

TMP_rec_vary, TMP_dim varys, TMP_var_num, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.21 CDF_var_get

SUBROUTINE CDF_var_get (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_num,
INTEGER*4 indices(*),
<type> value,
INTEGER*4 status)

out -- Value (<type> is dependent on the data type of the rVVariable).
out -- Completion status

I'in -- CDF identifier.
I'in -- rVariable number.
I'in -- Record number.

I in -- Dimension indices.
!

!

CDF_var_get is used to read a single value from an rVariable. CDF_var_hyper_get may be used to read more than one
rVariable value with a single call (see Section 5.22).

The arguments to CDF_var_get are defined as follows:

id

var_num

rec_num

indices

value

status

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

The number of the rVariable from which to read. This number may be determined with a
call to CDF_var_num (see Section 5.25).

The record number at which to read.

The array indices within the specified record at which to read. Each element of indices
specifies the corresponding dimension index. For 0-dimensional rVariables this argument is
ignored (but must be present).

The value read. This buffer must be large enough to hold the value. CDF_var_inquire
would be used to determine the rVariable's data type and number of elements (of that data
type) at each value. The value is read from the CDF and placed at memory address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

521.1 Example(s)

The following example will read and hold an entire record of data from an rVariable. The CDF's rVariables are 3-
dimensional with sizes [180,91,10]. For this rVariable the record variance is VARY, the dimension variances are
[VARY,VARY,VARY], and the data type is CDF_REALA4.

51

INCLUDE *<path>cdf.inc"

INTEGER*4 id
INTEGER*4 status
REAL*4 tmp(180,91,10)
INTEGER*4 indices(3)
INTEGER*4 var_n
INTEGER*4 rec_num
INTEGER*4 d1, d2, d3

CDF identifier.
Returned status code.
Temperature values.
Dimension indices.
rVariable number.
Record number.
Dimension index values.

var_n = CDF_var_num (id, "Temperature®)

IF (var_n .LT. 1) CALL UserStatusHandler (var_n) I If less than one (1),
I then it is actually a
I warning/error code.

rec_num = 13

DO d1 = 1, 180
indices(l) = dil
DO d2 = 1, 91
indices(2) = d2
DO d3 = 1, 10
indices(3) = d3
CALL CDF _var_get (id, var_n, rec_num, indices, tmp(dl,d2,d3), status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
END DO
END DO
END DO

5.22 CDF_var_hyper_get

SUBROUTINE CDF_var_hyper_get (

INTEGER*4 id, !'in -- CDF identifier.

INTEGER*4 var_num, I'in -- rVariable number.

INTEGER*4 rec_start, I in -- Starting record number.

INTEGER*4 rec_count, 1in -- Number of records.

INTEGER*4 rec_interval, I in -- Subsampling interval between records.

INTEGER*4 indices(*), I in -- Dimension indices of starting value.

INTEGER*4 counts(*), I'in -- Number of values along each dimension.

INTEGER*4 intervals(*), I in -- Subsampling intervals along each dimension.

<type> buffer, I in -- Buffer of values (<type> is dependent on the data type of the rVariable).
INTEGER*4 status) ! out -- Completion status

CDF_var_hyper_get is used to read a buffer of one or more values from an rVariable. It is important to know the
variable majority of the CDF before using CDF_var_hyper_get because the values placed into the buffer will be in that

52

majority. CDF_inquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_var_hyper_get are defined as follows:

id

var_num

rec_start
rec_count

rec_interval

indices

counts

intervals

buffer

status

5.22.1

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.

The number of the rVariable from which to read. This number may be determined with a call to
CDF_var_num (see Section 5.25).

The record number at which to start reading.
The number of records to read.

The interval between records for subsampling (e.g., an interval of 2 means read every other
record).

The indices (within each record) at which to start reading. Each element of indices specifies the
corresponding dimension index. If there are zero (0) dimensions, this argument is ignored (but
must be present).

The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional rVariables this argument is ignored (but
must be present).

For each dimension, the interval between values for subsampling (e.g., an interval of 2 means
read every other value). Each element of intervals specifies the corresponding dimension
interval. For O-dimensional rVariables, this argument is ignored (but must be present).

The buffer of values read. The majority of the values in this buffer will be the same as that of the
CDF. This buffer must be large to hold the values. CDF _var_inquire would be used to
determine the rVariable's data type and number of elements (of that data type) at each value. The
values are read from the CDF and placed into memory starting at address buffer.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does not
have one of the character data types, then value must NOT be a CHARACTER Fortran variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example in Section 5.21 except that it uses a single call to CDF_var_hyper_get rather than numerous calls to
CDF_var_get.

INCLUDE "<path>cdf.inc"

53

INTEGER*4 id

INTEGER*4 status
REAL*4 tmp(180,91,10)
INTEGER*4 var_n
INTEGER*4 rec_start
INTEGER*4 rec_count
INTEGER*4 rec_interval
INTEGER*4 indices(3)
INTEGER*4 counts(3)
INTEGER*4 intervals(3)

CDF identifier.
Returned status code.
Temperature values.
rVariable number.
Record number.

Record counts.

Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

DATA rec_start/13/, rec_count/1/, rec_interval/l/,
1 indices/1,1,1/, counts/180,91,10/, intervals/1,1,1/

var_n = CDF_var_num (id, "Temperature®)

IF (var_n .LT. 1) CALL UserStatusHandler (var_n) 1 If less than one (1),
I then it is actually a
I warning/error code.

CALL CDF_var_hyper_get (id, var_n, rec_start, rec_count, rec_interval,
1 indices, counts, intervals, tmp, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

Note that if the CDF's variable majority had been ROW_MAJOR, the tmp array would have been declared REAL*4
tmp[10][91][180] for proper indexing.

5.23 CDF_var_hyper put

SUBROUTINE CDF _var_hyper_put (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 var_num, I'in -- rVariable number.

INTEGER*4 rec_start, I in -- Starting record number.

INTEGER*4 rec_count, 1in -- Number of records.

INTEGER*4 rec_interval, I in -- Interval between records.

INTEGER*4 indices(*), 1 in -- Dimension indices of starting value.

INTEGER*4 counts(*), I'in -- Number of values along each dimension.

INTEGER*4 intervals(*), I in -- Interval between values along each dimension.

<type> buffer, I in -- Buffer of values (<type> is dependent on the data type of the rVariable).
INTEGER*4 status) ! out -- Completion status

CDF_var_hyper_put is used to write a buffer of one or more values to an rVariable. It is important to know the
variable majority of the CDF before using CDF_var_hyper_put because the values in the buffer to be written must be in
the same majority. CDF_inquire can be used to determine the default variable majority of a CDF distribution. The
Concepts chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_var_hyper_put are defined as follows:

54

5.23.1

var_num

rec_start
rec_count

rec_interval

indices

counts

intervals

buffer

status

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

The number of the rVariable to which to write. This number may be determined with a call to
CDF_var_num (see Section 5.25).

The record number at which to start writing.
The number of records to write.

The interval between records for subsampling® (e.g., An interval of 2 means write to every
other record).

The indices (within each record) at which to start writing. Each element of indices specifies
the corresponding dimension index. If there are zero (0) dimensions, this argument is ignored
(but must be present).

The number of values along each dimension to write. Each element of count specifies the
corresponding dimension count. For 0-dimensional rVariables this argument is ignored (but
must be present).

For each dimension the interval between values for subsampling* (e.g., an interval of 2 means
write to every other value). intervals is a 1-dimensional array containing one element per
rVariable dimension. Each element of intervals specifies the corresponding dimension
interval. For O-dimensional rVariables this argument is ignored (but a place holder is
necessary).

The buffer of values to write. The majority of the values in this buffer must be the same as
that of the CDF. The values starting at memory address buffer are written to the CDF.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example writes values to the rVariable LATITUDE of a CDF whose rVariables are 2-dimensional with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2. This example is similar to the example in Section 5.26

except that it uses a single call to CDF_var_hyper_put rather than numerous calls to CDF_var_put.

INCLUDE "<path>cdf. inc"

INTEGER*4 id

I CDF identifier.

INTEGER*4 status I Returned status code.

3

Subsampling” is not the best term to use when writing data, but you should know what we mean.

* Again, not the best term.

55

INTEGER*2 lat
INTEGER*2 lats(181)
INTEGER*4 var_n
INTEGER*4 rec_start
INTEGER*4 rec_count
INTEGER*4 rec_interval
INTEGER*4 indices(2)
INTEGER*4 counts(2)
INTEGER*4 intervals(2)

Latitude value.

Buffer of latitude values.
rVariable number.

Record number.

Record counts.

Record interval.

Dimension indices.
Dimension counts.
Dimension intervals.

DATA rec_start/1/, rec _count/1/, rec_interval/l/,
1 indices/1,1/, counts/1,181/, intervals/1,1/

var_n = CDF_var_num (id, "LATITUDE")
IF (var_n .LT. 1) CALL UserStatusHandler (var_n) I If less than one (1),
I then not an rVariable
I number but rather a
I warning/error code
DO lat = -90, 90
lats(91+lat) = lat
END DO

CALL CDF_var_hyper_put (id, var_n, rec_start, rec_count, rec_interval,
1 indices, counts, intervals, lats, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.24 CDF_var_inquire

SUBROUTINE CDF _var_inquire (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 var_num, I'in -- rVariable number.
CHARACTER var_name*(CDF_VAR_NAME_LEN256), ! out-- rVariable name.
INTEGER*4 data_type, I out -- Data type.

INTEGER*4 num_elements,

INTEGER*4 rec_variance,

INTEGER*4 dim_variances(CDF_MAX_DIMS),
INTEGER*4 status)

! out -- Number of elements (of the data type).

! out -- Record variance.

! out -- Dimension variances.

! out -- Completion status

CDF_var_inquire is used to inquire about the specified rVariable. This function would normally be used before
reading rVariable values (with CDF_var_get or CDF var_hyper_get) to determine the data type and number of
elements (of that data type).

The arguments to CDF_var_inquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open

56

var_num

var_name

data_type

num_elements

rec_variance

dim_variances

status

The number of the rVariable to inquire. This humber may be determined with a call to
CDF_var_num (see Section 5.25).

The rVariable's name. This character string must be large enough to hold
CDF_VAR_NAME_LEN256 characters and will be blank padded if necessary.

The data type of the rVariable. The data types are defined in Section 4.5.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The record variance. The record variances are defined in Section 4.9.

The dimension variances. Each element of dim_variances receives the corresponding
dimension variance. The dimension variances are defined in Section 4.9. For O-
dimensional rVariable this argument is ignored (but must be present).

The completion status code. Chapter 8 explains how to interpret status codes.

5.24.1 Example(s)

The following example inquires about an rVariable named HEAT_FLUX in a CDF. Note that the rVariable name
returned by CDF_var_inquire will be the same as that passed in to CDF_var_num.

INCLUDE "<path>cdf.inc*

INTEGER*4 id
INTEGER*4 status

1 CDF identifier.
! Returned status code.

CHARACTER var_name*(CDF_VAR_NAME_LEN2565 I rvariable name.
INTEGER*4 data_type I Data type.

INTEGER*4 num_elems
INTEGER*4 rec_vary
INTEGER*4 dim_varys(CDF_MAX_DIMS)

Number of elements (of data type).
Record variance.

Dimension variances (allocate to
allow the maximum number of
dimensions).

CALL CDF_var_inquire (id, CDF_var_num(id, "HEAT_FLUX"), var_name, data_type,

1

num_elems, rec vary, dim_varys, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.25 CDF_var_num

INTEGER*4 FUNCTION CDF_var_num (

57

INTEGER*4 id,

l'in-- CDF identifier.

CHARACTER var_name*(*)); !in-- Variable name.

CDF_var_num is used to determine the number associated with a given rVariable or zVariable name. If the variable is
found, CDF_var_num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g., the
rVVariable does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less than zero

0).

The arguments to CDF_var_num are defined as follows:

id

VarName

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create

or CDF_open.

The name of the variable, either rVariable or zVariable, for which to search. This may be at

most CDF_VAR_NAME_LEN256 characters. Variable names are case-sensitive.

CDF_var_num may be used as an embedded function call when a variable number is needed. CDF_var_num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

5.25.1

Example(s)

In the following example CDF_var_num is used as an embedded function call when inquiring about an rVariable.

iNCLUDE "<path>cdf.inc"

INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4

id !
status !
var_name*(CDF_VAR_NAME_LEN256)
data_type !
num_elements

rec_variances
dim_variances(CDF_MAX DIMS)

CDF identifier.
Returned status code.
! rVariable name.
Data type of the rVariable.
Number of elements (of the
data type).
Record variance.
Dimension variances.

CALL CDF_var_inquire (id, CDF_var_num(id,"LATITUDE"), var_name, data_type,
num_elements, rec variance, dim _variances, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

1

In this example the rVVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDF_var_num would have returned an error code. Passing that error code to CDF_var_inquire as an rVariable
number would have resulted in CDF_var_inquire also returning an error code. Also note that the name written into
var_name is already known (LATITUDE). In some cases the rVariable names will be unknown - CDF_var_inquire

would be used to determine them. CDF_var_inquire is described in Section 5.24.

58

5.26 CDF_var put

SUBROUTINE CDF_var_put (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_num,
INTEGER*4 indices(*),
<type> value,
INTEGER*4 status)

! - CDF identifier.

! - rVariable number.
I'in -- Record number.
!

|

!

55
1 1

- Dimension indices.
out -- Value (<type> is dependent on the data type of the rVariable).
out -- Completion status

5.
1

CDF_var_put is used to write a single value to an rVVariable. CDF_var_hyper_put may be used to write more than one
rVVariable value with a single call (see Section 5.23).

The arguments to CDF_var_put are defined as follows:

id

var_num

rec_num

indices

value

status

5.26.1 Exam

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

The number of the rVariable to which to write. This number may be determined with a call
to CDF_var_num (see Section 5.25).

The record number at which to write.

The array indices within the specified record at which to write. Each element of indices
specifies the corresponding dimension index. For 0-dimensional rVariables this argument is
ignored (but must be present).

The value to write. The value is written to the CDF from memory address value.
WARNING: If the rVariable has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

ple(s)

The following example writes values to the rVariable named LATITUDE in a CDF whose rVariables are 2-

dimensional with dimensi

on sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension

variances are [NOVARY,VARY], and the data type is CDF_INT2.

INCLUDE *<path>

INTEGER*4 id
INTEGER*4 statu
INTEGER*2 lat
INTEGER*4 var_n
INTEGER*4 rec_n

cdf.inc”

CDF identifier.
Returned status code.
Latitude value.
rVariable number.
Record number.

S

um

59

INTEGER*4 indices(2) I Dimension indices.

DATA rec_num/1/, indices/1,1/

var_n = CDF_var_num (id, "LATITUDE")
IF (var_n .LT. 1) CALL UserStatusHandler (var_n) 1 If less than one (1),
I then not an rVariable
I number but rather a
I warning/error code.
DO lat = -90, 90
indices(2) = 91 + lat
CALL CDF_var_put (id, var_n, rec_num, indices, lat, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
END DO

Since the record variance is NOVARY, the record number (rec_num) is set to one (1). Also note that because the
dimension variances are [NOVARY,VARY], only the second dimension is varied as values are written. (The values are
“virtually” the same at each index of the first dimension.)

5.27 CDF_var_rename

SUBROUTINE CDF_var_rename (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var_num, 1in -- rVariable number.
CHARACTER var_name*(*), 1in -- New name.
INTEGER*4 status) ! out -- Completion status

CDF_var_rename is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_var_rename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.
var_num The number of the rVariable to rename. This number may be determined with a call to

CDF_var_num (see Section 5.25).

var_name The new rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
Variable names are case-sensitive.
status The completion status code. Chapter 8 explains how to interpret status codes.
5.27.1 Example(s)

60

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDF_var_num returns a value less than one (1) then that value is not an rVariable number but rather a warning/error
code.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 var_num I rvariable number.

var_num = CDF_var_num (id, "TEMPERATURE®)
IF (var_num _LT. 1) THEN
IF (var_num _NE. NO_SUCH_VAR) CALL UserStatusHandler (var_num)
ELSE
CALL CDF_var_rename (id, var_num, "TMP", status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
END IF

61

Chapter 6

6 Standard Interface (New)

The following sections describe the new set of Standard Interface routines callable from Fortran applications. Most
subroutines return a status code of type INTEGER*4 (see Chapter 8). The Internal Interface is described in Chapter 7.
An application can use either or both interfaces when necessary.

Previously, the Standard Interface only provided a very limited functionality within the CDF library. For example, it
could not handle zVariables and vAttribute zEntries (they were only accessible via the Internal Interface). Since V3.1,
the Standard Interface has been expanded to include many new operations that are previously only available through
the Internal Interface.

The original Standard Interface functions' and subroutines?, described in Chapter 5, in the previous library version are
still available and work the same way as before. To encourage the use of zVariables, the preferred variable type over
the rVariables in the CDF, new subroutines are explicitly added to the library to handle zVariables, their data as well as
entries in the variable-scoped attributes. The original Standard Interface functions/subroutines can be used to operate
the rVariables and their associated rEntries. The Internal Interface needs to be called to operate the functions/items that
are not available from the new Standard Interface.

A naming convention is adopted by the new Standard Interface subroutines to separate the operations on zVariable, as
well as entry, i.e., gEntry, rEntry and zEntry.

The new functions, based on the operands, are grouped into four (4) categories: library, CDFs, variables and
attributes/entries.

6.1 Library

The functions in this section are related to the library being used for the CDF operations and are common for any CDF
entity, i.e., CDFs, variables, attributes and entries.

! They are: CDF_attr_ Num and CDF_var_Num.

% They are: CDF_create, CDF_open, CDF_doc, CDF _inquire, CDF_close, CDF_delete, CDF_attr_Create,
CDF_attr_Rename, CDF_attr_Inquire, CDF_attr_Entry_Inquire, CDF_attr_Put, CDF_attr_Get, CDF_var_Create,
CDF_var_Rename, CDF_var_Inquire, CDF_var_Put, CDF_var_Get, CDF_var_Hyper_Put, CDF_var_Hyper_Get,
CDF_var_Close, CDF_getrVarsRecordData, CDF_getzVarsRecordData, CDF_putrVarsRecordData and
CDF_putzVarsRecordData.

63

6.1.1 CDF_get_datatype_size

SUBROUTINE CDF_get_datatype_size (

INTEGER*4 data_type, ! in -- CDF data type.
INTEGER*4 size, ! out-- Size in bytes.
INTEGER*4 status) ! out-- Completion status

CDF_get_datatyep_size acquires the size (in bytes) of an element of the specified CDF data type
The arguments to CDF_get_datatype_size are defined as follows:

data_type The CDF data type.

size Size in bytes of that data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.1.1.1. Example(s)

The following example acquires the size (in bytes) of CDF data type CDF_INT4 (it should be 4 bytes).

INCLUDE *<path>cdf. inc"

INTEGER*4 size I Size of the data type.
INTEGER*4 status 1 Returned status code.

CALL CDF_get_datatype_size (CDF_INT4, size, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.1.2 CDF_get_lib_copyright

SUBROUTINE CDF _get_lib_copyright (

CHARACTER copyright*(*), ! out -- CDF library copyright notice.
INTEGER*4 status) ! out -- Completion status

CDF_get_lib_copyright acquires the copyright notice of the CDF library being used.
The arguments to CDF_get_lib_copyright are defined as follows:

copyright The copyright notice from the CDF library.

64

status The completion status code. Chapter 8 explains how to interpret status codes.

6.1.2.1. Example(s)

The following example acquires the CDF library’s copyright notice.

INCLUDE "<path>cdf.inc*

CHARACTER copyright*(CDF_COPYRIGHT_LEN) I Copyright notice.
INTEGER*4 status ! Returned status code.

CALL CDF_get_lib_copyright (copyright, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.1.3 CDF_get_lib_version

SUBROUTINE CDF_get_lib_version (

INTEGER*4 version, ! out-- CDF library version.
INTEGER*4 release, I out -- CDF library release.
INTEGER*4 increment, I out -- CDF library increment.
CHARACTER sub_increment*(*) ! out -- CDF library sub-increment..
INTEGER*4 status) ! out -- Completion status.

CDF_get_lib_version acquires the version and release information from the CDF library being used
The arguments to CDF_get_lib_version are defined as follows:

version The CDF library version.

release The CDF library release.

increment The CDF library increment.

sub_increment The CDF library sub-increment.

status The completion status code. Chapter 8 explains how to interpret status codes.

65

6.1.3.1. Example(s)

The following example acquires the CDF library’s version/release information.

INCLUDE "<path>cdf. inc"

INTEGER*4 version
INTEGER*4 release
INTEGER*4 increment
CHARACTER sub_increment*1
INTEGER*4 status

Library version.
Library release.
Library increment.
Library sub-increment.
Returned status code.

CALL CDF _get lib_version (version, release, increment,
1 sub_increment, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.14 CDF_get_status_text

SUBROUTINE CDF_get_status_text (

INTEGER*4 status_id, 1 in -- CDF status identifier.
CHARACTER text*(*), ! out -- Status text description.
INTEGER*4 status) ! out-- Completion status

CDF_get_status_text is used to inquire the explanation of a given status code (not just error codes). Chapter 8 explains
how to interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDF_get_status_text are defined as follows:

status_id The status code to check.

message The explanation of the status code. This character string must be large enough to hold
CDF_STATUSTEXT_LEN characters and will be blank padded if necessary.

status The status of checking.

6.1.4.1. Example(s)
The following example displays the explanation text if an error code is returned from a call to CDF_open_cdf.

INCLUDE *<path>cdf. inc"

66

CDF identifier.

Returned status code.
Explanation text.

Last character position
actually used in the copyright.

INTEGER*4 id

INTEGER*4 statusl, status?
CHARACTER text*(CDF_STATUSTEXT_LEN)
INTEGER*4 last_char

CALL CDF_open_cdf ("giss wetl®, id, statusl)

IF (statusl .LT. CDF_WARN) THEN I INFO and WARNING codes ignored.
CALL CDF_get status_text (statusl, text, status2?)
last_CHARACTER= CDF_STATUSTEXT_LEN
DO WHILE (text(last char:last char) .EQ. " ©)

last_CHARACTER= last_CHARACTER- 1
END DO
WRITE (6,101) text(l:last_char)
101 FORMAT (* *,"ERROR> *,A)
END IF

6.2 CDF

The functions in this section provide CDF-specific operatons. Any operations on variables or attributes in a CDF are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

6.2.1 CDF_close_cdf

SUBROUTINE CDF_close_cdf (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF_close_cdf closes the specified CDF. The CDF's cache buffers are ushed; the CDF's open file is closed (or files in
the case of a multi-file CDF); and the CDF identifier is made available for reuse. This routine is identical to the original
Standard Interface routine CDF_close.

NOTE: You must close a CDF with CDF_close_cdf to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDF_close_cdf,
the CDF's cache buffers are left unushed.

The arguments to CDF_close_cdf are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

status The completion status code. Chapter 8 explains how to interpret status codes.

67

6.2.1.1. Example(s)

The following example will close an open CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_close_cdf (id, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.2 CDF_create_cdf

SUBROUTINE CDF_create_cdf (

CHARACTER CDF_name*(*), lin -- CDF file name.
INTEGER*4 status) ! out-- Completion status

CDF_create_cdf creates a CDF as defined by the arguments. This function provides the simplest form of CDF creation
without the number of dimensions, dimension sizes, encoding and majority arguments required in the original Standard
Interface routine, CDF_create, or the similar process from the Internal Interface CDF _lib routine. The created CDF will
have zero (0) dimension (thus no dimension sizes) and use the default encoding (HOST_ENCODING) and majority
(ROW_MAJOR), specified in the configuration file of your CDF distribution. This routine should be used to create
CDFs that will have only zVariables, or rVariables with no dimensionality. Use CDF_create or CDF_lib routine to
create CDFs to hold rVariables with dimensions. A CDF cannot be created if it already exists. (The existing CDF will
not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDF_open_cdf, delete it
with CDF_delete, and then recreate it with CDF_create_cdf. If the existing CDF is corrupted, the call to
CDF_open_cdf will fail. (An error code will be returned.) In this case you must delete the CDF at the command line.
Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable
files (having extensions of .v0,.v1,. .. and .z0,.z1,.. .).

The arguments to CDF_create_cdf are defined as follows:
CDF_name The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including

logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.
status The completion status code. Chapter 8 explains how to interpret status codes.

68

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDF_create is specified in the configuration file of your CDF distribution. Consult your system manager for this
default. The CDF_lib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDF_close_cdf must be used to close the CDF before your application exits to ensure that the CDF will
be correctly written to disk (see Section 6.2.1).

6.2.2.1. Example(s)

The following example will create a CDF named testl with default encoding and majority.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF _create_cdf ("testl®, id, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.3 CDF_delete cdf

SUBROUTINE CDF_delete_cdf (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF_delete_cdf deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of
.cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. .. and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDF_delete_cdf are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

69

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.3.1. Example(s)

The following example will open and then delete an existing CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_open_cdf ("test2", id, status)

IF (status .LT. CDF_OK) THEN I INFO status codes ignored.
CALL UserStatusHandler (status)

ELSE
CALL CDF _delete _cdf (id, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

END IF
6.2.4 CDF_get_cachesize
SUBROUTINE CDF_get_cachesize (
INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! out -- Number of cache buffers.
INTEGER*4 status) ! out-- Completion status

CDF_get_cachesize acquires the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_get_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.4.1. Example(s)

70

The following example acquires the number of cache buffers used for a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 num_buffers I Number of cache buffers.
INTEGER*4 status 1 Returned status code.

CALL CDF _get cachesize (id, num_buffers, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.5 CDF_get_compress_cachesize

SUBROUTINE CDF_get_compress_cachesize (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 num_buffers, ! out -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_get_compress_cachesize acquires the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_get_compress_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.25.1. Example(s)

The following example acquires the number of cache buffers used for the compression scratch CDF file.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

71

INTEGER*4 num_buffers I Number of cache buffers.
INTEGER*4 status I Returned status code.

CALL CDF_get compress_cachesize (id, num_buffers, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.6 CDF_get_compression

SUBROUTINE CDF_get_compression (

INTEGER*4 id, !'in -- CDF identifier.

INTEGER*4 compress_type, I out -- Compression type.

INTEGER*4 compress_parms(*), ! out-- Compression parameters.

INTEGER*4 compress_percent, ! out-- Compression percentage.

INTEGER*4 status) ! out -- Completion status

CDF_get_compression acquires the compression information of the CDF. It returns the compression type (method)
and, if compressed, the compression parameters and compression rate. CDF compression types/parameters are
described in Section 4.10.

The arguments to CDF_get_compression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

compress_type The compression type.
compress_parms The compression paramters.
compress_percent The compression percentage.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.6.1. Example(s)

The following example acquires the compression information from a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 1id I CDF identifier.
INTEGER*4 compress_type I Compression type.
INTEGER*4 compress_parms(CDF_MAX_DIMS) ! Compression paramters.
INTEGER*4 compress_percent I Compression percentage.

72

INTEGER*4 status ! Returned status code.

CALL CDF_get_compression (id, compress_type, compress_parms,
1 compress_percent, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.7 CDF_get_compression_info

SUBROUTINE CDF_get_compression_info (

char *CDFname, 1'in -- CDF name. */
INTEGER*4 compress_type, I out -- Compression type.
INTEGER*4 compress_parms(*), ! out-- Compression parameters.
INTEGER*4 compress_percent, ! out-- Compression percentage.
INTEGER*4 status) ! out -- Completion status

CDF_get_compression_info returns the compression type/parameters of a CDF without having to open the CDF. This
refers to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressioninfo are defined as follows:
CDFname The pathname of a CDF file without the .cdf file extension.
compress_type The compression type.
compress_parms The compression paramters.
compress_percent The compression percentage.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.7.1. Example(s)

The following example acquires the compression information from a CDF named “MY CDF.cdf”.

iNCLUDE "<path>cdf.inc"

INTEGER*4 compress_type I Compression type.
INTEGER*4 compress_parms(CDF_MAX_DIMS) ! Compression paramters.
INTEGER*4 compress_percent I Compression percentage.
INTEGER*4 status I Returned status code.

73

CALL CDF _get _compression_info (“MYCDF”, id, compress_type, compress_parms,
1 compress_percent, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.8 CDF_get_copyright
SUBROUTINE CDF_get_copyright (

INTEGER*4 id, !in -- CDF identifier.
CHARACTER copyright*(*), ! out-- Copyright notice.
INTEGER*4 status) ! out -- Completion status

CDF_get_copyright acquires the copyright notice in a CDF.
The arguments to CDF_get_copyright are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

copyright The copyright notice.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.8.1. Example(s)

The following example acquires the copyright notice from a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

CHARACTER copyright*(CDF_COPYRIGHT_LEN) I Copyright.
INTEGER*4 status 1 Returned status code.

CALL CDF_get_copyright (id, copyright, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

74

6.2.9 CDF_get_decoding

SUBROUTINE CDF_get_decoding (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 decoding, ! out-- CDF decoding.
INTEGER*4 status) ! out-- Completion status

CDF_get_decoding acquires the decoding for the data in a CDF. The decodings are described in Section 4.7.
The arguments to CDF_get_decoding are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

decoding The decoding.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.9.1. Example(s)

The following example acquires the decoding code for a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 decoding I Decoding.
INTEGER*4 status 1 Returned status code.

éALL CDF_get_decoding (id, decoding, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.10 CDF_get_encoding

SUBROUTINE CDF_get_encoding (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 decoding, ! out-- CDF encoding.
INTEGER*4 status) ! out -- Completion status

CDF_get_encoding acquires the encoding code used for the data in a CDF. The encodings are described in Section 4.6.

75

The arguments to CDF_get_encoding are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

encoding The encoding.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.10.1. Example(s)

The following example acquires the encoding code used in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 encoding I Encoding.
INTEGER*4 status 1 Returned status code.

CALL CDF _get _encoding (id, encoding, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.11 CDF_get_format

SUBROUTINE CDF_get_format (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 format, ! out -- CDF format.
INTEGER*4 status) ! out -- Completion status

CDF_get_format acquires the file format, single or multi-file, of the CDF. The formats are described in Section 4.4.

The arguments to CDF_get_format are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

format The format.

status The completion status code. Chapter 8 explains how to interpret status codes.

76

6.2.11.1. Example(s)

The following example acquires the file format for a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 format ! Format.
INTEGER*4 status 1 Returned status code.

CALL CDF _get format (id, format, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.12 CDF_get_majority

SUBROUTINE CDF_get_majority (

INTEGER*4 id, !'in -- CDF identifier.
INTEGER*4 majority, ! out -- Variable majority.
INTEGER*4 status) ! out -- Completion status

CDF_get_majority acquires the variable majority, row or column-major, of the CDF. The majorities are described in
Section 4.8.

The arguments to CDF_get_majority are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

majority ~ The variable majority of the CDF.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.12.1. Example(s)

The following example acquires the variable majority of a CDF.

INCLUDE *<path>cdf.inc"

77

INTEGER*4 id ! CDF identifier.
INTEGER*4 majority I Variable majority.
INTEGER*4 status I Returned status code.

CALL CDF_get _majority (id, majority, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.13 CDF_get_name

SUBROUTINE CDF_get_name (

INTEGER*4 id, I'in -- CDF identifier.
INTEGER*4 name, I out -- CDF name.
INTEGER*4 status) ! out -- Completion status

CDF_get_name acquires the name of the specified CDF.

The arguments to CDF_get_name are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

name The name of the CDF

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.13.1. Example(s)

The following example acquires the name of a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

CHARACTER name*(CDF_PATHNAME_LEN) 1 CDF name.
INTEGER*4 status ! Returned status code.

CALL CDF_get _name (id, name, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

78

6.2.14 CDF_get_negtoposfp0_mode

SUBROUTINE CDF_get_negtoposfp0_mode (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 negtoposfp0, ! out -- -0.0 to 0.0 mode.
INTEGER*4 status) ! out -- Completion status

CDF_get_negtoposfp0_mode acquires —0.0 to 0.0 mode of the CDF. You can use CDF_set_negtoposfp0_mode
subroutine to set the mode. The —0.0 to 0.0 modes are described in Section 4.15.

The arguments to CDF_get_negtoposfp0_mode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

negtoposfp0The —0.0 to 0.0 mode of the CDF.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.14.1. Example(s)

The following example acquires the 0.0 to 0.0 mode of a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 negtoposfpO I —-0.0 to 0.0 mode.
INTEGER*4 status I Returned status code.

CALL CDF_get_negtoposfpO_mode (id, negtoposfpO, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.15 CDF_get_readonly_mode

SUBROUTINE CDF_get_readonly_mode (

INTEGER*4 id, I'in -- CDF identifier.

79

INTEGER*4 readonly, ! out -- Read-only mode of the CDF.
INTEGER*4 status) ! out -- Completion status

CDF_get_readonly_mode acquires the read-only mode for a CDF. You can use CDF_set readonly_mode to set the
mode. The read-only modes are described in Section 4.13.

The arguments to CDF_get_readonly_mode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

readonly The read-only mode.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.15.1. Example(s)

The following example acquires the read-only mode of a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 readonly I Read-only mode.
INTEGER*4 status 1 Returned status code.

CALL CDF_get_readonly mode (id, readonly, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.16 CDF_get _stage cachesize

SUBROUTINE CDF_get_stage cachesize (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! out -- Number of cache buffers.
INTEGER*4 status) ! out-- Completion status

CDF_get_stage_cachesize inquires the number of cache buffers being used for the staging scatch file a CDF. Refer to
the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDF_get_stage cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

80

num_buffers Number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.16.1. Example(s)

The following example acquires the number of cache size buffers used for the staging scratch file for a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id ! CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 num_buffers I Number of cache buffers.

CALL CDF _get _stage cachesize (id, num _buffers, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.17 CDF_get_version

SUBROUTINE CDF_get version (

INTEGER*4 id,
INTEGER*4 version,
INTEGER*4 release,
INTEGER*4 increment,
INTEGER*4 status)

in -- CDF identifier.

out -- CDF version number.

out -- CDF release number within the version.
out -- CDF increment number within the release.
out -- Completion status

CDF_get_version inquires the version/release information for a CDF file. This information reflects the CDF library that
was used to create the CDF file.

The arguments to CDF_get_version are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

version CDF version number.

release CDF release number within the version.

increment CDF increment number within the release.

status The completion status code. Chapter 8 explains how to interpret status codes.

81

6.2.17.1. Example(s)

In the following example, a CDF’s version/release is acquired.

INCLUDE "<path>cdf. inc"

INTEGER*4 id
INTEGER*4 status
INTEGER*4 version
INTEGER*4 release
INTEGER*4 increment

CDF identifier.
Returned status code.
CDF version number.
CDF release number.
CDF increment number.

CALL CDF _get version (id, version, rrelease, increment, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.18 CDF_get_zmode

SUBROUTINE CDF_get zmode (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 zmode, I out -- CDF zMode.
INTEGER*4 status) ! out -- Completion status

CDF_get_zmode inquires the zMode for a CDF file. The zModes are described in Section 4.14.

The arguments to CDF_get_zmode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

zmode CDF zMode.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.18.1. Example(s)

In the following example, a CDF’s zMode is acquired.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

82

INTEGER*4 status
INTEGER*4 zmode

I Returned status code.
1 CDF zMode.

CALL CDF _get zmode (id, zmode, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.19

CDF _inquire_cdf

SUBROUTINE CDF_inquire_cdf (

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CDF_inquire

id, !'in -- CDF identifier

num_dims, ! out -- Number of dimensions, rVariables.
dim_sizes(CDF_MAX_DIMS), ! out -- Dimension sizes, rVariables.

encoding, ! out -- Data encoding.

majority, ! out -- Variable majority.

max_rrec, ! out-- Maximum record number in the CDF, rVariables.
num_rvars, ! out-- Number of rVariables in the CDF.

max_zrec, ! out -- Maximum record number in the CDF, zVariables.
num_zvars, ! out -- Number of zVariables in the CDF.

num_attrs, ! out -- Number of attributes in the CDF.

status) ! out -- Completion status

cdf inquires the basic characteristics of a CDF. This subroutine expands the original Standard Interface

subroutine C_DF_inquire by acquiring extra information regarding the zVariables. An application needs to know the

number of rVariable dimensions and their sizes before it can access rVariable data.

For zVariables, use

CDF_get_zvar_numdims and CDF_get_zvar_dimsizes subroutines to acquire each individual zVariable’s dimensions
and its sizes. Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDF_inquire_cdf are defined as follows:

id

num_dims

dim_sizes

encoding

majority

max_rrec

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The number of dimensions for the rVariables in the CDF.

The dimension sizes of the rVariables in the CDF. dim_sizes is a 1-dimensional array
containing one element per dimension. Each element of dim_sizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 4.6.

The majority of the variable data. The majorities are defined in Section 4.8.
The maximum record number written to an rVariable in the CDF. Note that the maximum

record number written is also kept separately for each rVariable in the CDF. The value of
max_rrec is the largest of these. Some rVariables may have fewer records actually written

83

num_rvars

max_zrec

num_zvars
num_attrs

status

6.2.

The number of rVariables in the CDF.

The maximum record number written to a zVariable in the CDF. Note that the maximum
record number written is also kept separately for each zVariable in the CDF. The value of
Some zVariables may have fewer records actually
written. CDF_get_zvar_maxwrittenrecnum (Section 6.3.19) can be used to inquire the

max_zrec is the largest of these.

maximum record written for an individual zVariable.

The number of zVariables in the CDF.

The number of attributes in the CDF.

The completion status code. Chapter 8 explains how to interpret status codes.

19.1. Example(s)

The following example inquires the basic information about a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
status
num_dims

dim_sizes(CDF_MAX DIMS)!

encoding
majority
max_rrec
num_rvars
max_zrec
num_zvars
num_attrs

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables

(allocate to allow the maximum

number of dimensions).

Data encoding.

Variable majority.

Maximum record number among rVariables.
Number of rVariables in CDF.

Maximum record number among zVariables.
Number of zVariables in CDF.

Number of attributes in CDF.

CALL CDF_inquire_cdf (id, num_dims, dim_sizes, encoding, majority,
max_rrec, num_rvars, max_zrec, num_zvars, num_attrs,

"IF (status .NE. CDF OK

6.2.20

SUBROUTINE CDF_open_cdf (

CHARACTER CDF_name*(*),

status)

) CALL UserStatusHandler (status)

CDF_open_cdf

I in -- CDF file name.

84

INTEGER*4
INTEGER*4

! out-- CDF identifier.
! out -- Completion status

CDF_open_cdf opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write
access to the CDF.) This routine is identical to the original Standard Interface routine CDF_open.

The arguments to CDF_open_cdf are defined as follows:

CDF_name

status

The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

The completion status code. Chapter 8 explains how to interpret status codes.

NOTE: CDF _close_cdf must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk (see Section 6.2.1).

6.2.20.1.

Example(s)

The following example will open a CDF named NOAAL.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

1 CDF identifier.

INTEGER*4 status I Returned status code.
CHARACTER CDF_name*(CDF_PATHNAME_LEN) I File name of CDF.

DATA CDF_name/"NOAA1*"/

CALL CDF_open_cdf (CDF_name, id, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.21

CDF_set_cachesize

SUBROUTINE CDF_set_cachesize (

85

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 num_buffers, 1in -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_set_cachesize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to

the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_set_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.21.1. Example(s)

The following example sets the number of cache buffers to 10 to be used for a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id 1 CDF identifier.
INTEGER*4 num_buffers I Number of cache buffers.
INTEGER*4 status I Returned status code.

ﬁum_buffers = 10
CALL CDF_set_cachesize (id, num_buffers, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.22 CDF_set_compress_cachesize

SUBROUTINE CDF_set_compress_cachesize (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_buffers, 1 in -- Number of cache buffers.
INTEGER*4 status) ! out-- Completion status

CDF_set_compress_cachesize specifies the number of cache buffers used for the compression scratch CDF file. Refer

to the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_set_compress_cachesize are defined as follows:

86

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.22.1. Example(s)

The following example sets the number of cache buffers to 10 to be used for the compression scratch CDF file.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 num_buffers I Number of cache buffers.
INTEGER*4 status I Returned status code.

ﬁum_buffers = 10
CALL CDF_set_compress_cachesize (id, num_buffers, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.23 CDF_set_compression

SUBROUTINE CDF_set_compression (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 compress_type, Iin -- Compression type.
INTEGER*4 compress_parms(*), ! in -- Compression parameters.
INTEGER*4 status) ! out -- Completion status

CDF_set_compression specifies the compression information of the CDF. It returns the compression type (method)
and, if compressed, the compression parameters and compression rate. CDF compression types/parameters are
described in Section 4.10.

The arguments to CDF_set_compression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

compress_type The compression type.

compress_parms The compression paramters.

87

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.23.1. Example(s)

The following example uses GZIP.9 compression for a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 compress_type I Compression type.
INTEGER*4 compress_parms(CDF_MAX_DIMS) ! Compression paramters.
INTEGER*4 status ! Returned status code.

compress_type = GZIP_COMPRESSION

compress_parms(l) = 9

CALL CDF_set_compression (id, compress_type, compress_parms,
1 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.24 CDF_set_decoding

SUBROUTINE CDF _set_decoding (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 decoding, ! in -- CDF decoding.
INTEGER*4 status) ! out-- Completion status

CDF_set_decoding specifies the decoding for the data in a CDF. The decodings are described in Section 4.7.

The arguments to CDF_set_decoding are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

decoding The decoding.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.24.1. Example(s)

88

The following example sets the decoding to NETWORK_DECODING for a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 decoding I Decoding.
INTEGER*4 status 1 Returned status code.

decoding = NETWORK_DECODING
CALL CDF_set _decoding (id, decoding, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.25 CDF_set_encoding

SUBROUTINE CDF _set_encoding (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 decoding, ! in-- CDF encoding.
INTEGER*4 status) ! out -- Completion status

CDF_set_encoding specifies the encoding code used for the data in a CDF. The encodings are described in Section 4.6.
The arguments to CDF_set_encoding are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

encoding The encoding.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.25.1. Example(s)

The following example sets the encoding code to NETWORK_ENCODING to be used for a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 encoding I Encoding.

89

INTEGER*4 status I Returned status code.

encoding = NETWORK_ENCODING
CALL CDF_set_encoding (id, encoding, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.26 CDF_set_format

SUBROUTINE CDF_set_format (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 format, ! in -- CDF format.
INTEGER*4 status) ! out -- Completion status

CDF_set_format specifies the file format, single or multi-file, of the CDF. The formats are described in Section 4.4.

The arguments to CDF_set_format are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

format The format.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.26.1. Example(s)

The following example sets the file format to MULTI_FILE_FORMAT for a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 format I Format.
INTEGER*4 status ! Returned status code.

%ormat = MULTI_FILE_FORMAT
CALL CDF_set_format (id, format, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

90

6.2.27 CDF_set_majority

SUBROUTINE CDF_set_majority (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 majority, 1in -- Variable majority.
INTEGER*4 status) ! out -- Completion status

CDF_set_majority specifies the variable majority, row or column-major, of the CDF. The majorities are described in
Section 4.8.

The arguments to CDF_set_majority are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

majority The variable majority of the CDF.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.27.1. Example(s)

The following example sets the variable majority to ROW_MAJOR for a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 majority I Variable majority.
INTEGER*4 status I Returned status code.

majority = ROW_MAJOR
CALL CDF_set _majority (id, majority, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.28 CDF_set_negtoposfp0_mode

SUBROUTINE CDF_set_negtoposfp0_maode (

INTEGER*4 id, !'in -- CDF identifier.

91

INTEGER*4 negtoposfp0, I'in ---0.0to 0.0 mode.
INTEGER*4 status) ! out -- Completion status

CDF_set_negtoposfp0_mode specifies -0.0 to 0.0 mode of the CDF. You can use CDF_get_negtoposfp0_mode
subroutine to check the mode. The —0.0 to 0.0 modes are described in Section 4.15.

The arguments to CDF_set_negtoposfp0_mode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

negtoposfp0The —0.0 to 0.0 mode of the CDF.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.28.1. Example(s)

The following example sets the —0.0 to 0.0 mode to NEGtoPOSfpQOoff for a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 negtoposfpO I —-0.0 to 0.0 mode.
INTEGER*4 status I Returned status code.

negtoposfp0 = NEGtoPOSFpOOFf
CALL CDF_set_negtoposfpO_mode (id, negtoposfpO, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.29 CDF _set_readonly_mode

SUBROUTINE CDF_set_readonly_mode (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 readonly, I in -- Read-only mode of the CDF.
INTEGER*4 status) ! out -- Completion status

CDF_set_readonly_mode specifies the read-only mode for a CDF. You can use CDF_get readonly_mode to check the
mode. The read-only modes are described in Section 4.13.

The arguments to CDF_set_readonly_mode are defined as follows:

92

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

readonly The read-only mode.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.29.1.

Example(s)

The following example sets the read-only mode to READONLY off (to allow read/write) for a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

1 CDF identifier.

INTEGER*4 readonly I Read-only mode.
INTEGER*4 status I Returned status code.

readonly = READONLYoff
CALL CDF_set_readonly mode (id, readonly, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.30 CDF _set_stage_cachesize

SUBROUTINE CDF _set_stage_cachesize (

INTEGER*4 id,

I'in -- CDF identifier.

INTEGER*4 num_buffers, 1in -- Number of cache buffers.

INTEGER*4 status)

! out -- Completion status

CDF_set_stage cachesize respecifies the number of cache buffers being used for the staging scatch file a CDF. Refer to
the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDF_set_stage_cachesize are defined as follows:

id

num_buffers

status

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

Number of cache buffers.

The completion status code. Chapter 8 explains how to interpret status codes.

93

6.2.30.1. Example(s)

The following example sets the number of stage cache buffers to 10 for a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 num_buffers I Number of cache buffers.

num_buffers = 10
CALL CDF_set_stage cachesize (id, rec_number, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.31 CDF_set_zmode

SUBROUTINE CDF_set_zmode (

INTEGER*4 id, !'in -- CDF identifier.
INTEGER*4 zmode, 1'in -- zMode.
INTEGER*4 status) ! out -- Completion status

CDF_set_zmode respecifies the zMode for a CDF file. The zModes are described in Section 4.14.

The arguments to CDF_set_zmode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

zmode CDF zMode.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.31.1. Example(s)

The following example sets zMode to zMODEon2, all rVariables are viewed as zVariables with NOVARY dimensions
being eliminated, for a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

94

INTEGER*4 status I Returned status code.

CALL CDF_set_zmode (id, zMODEon2, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3 Variable

This section prvides the variable-specific functions. A variable is identified by its unique name in a CDF or a variable
number in either rVariable or zVariable group. To operate a variable, the CDF it resides in must be open.

6.3.1 CDF_close_zvar

SUBROUTINE CDF _close_zvar (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 var_num, 1in -- zVariable identifier.
INTEGER*4 status) ! out -- Completion status

CDF_close_zvar closes the specified zVariable file from a multi-file format CDF. The variable's cache buffers are
flushed before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDF_close_zvar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

var_num The variable number for the open zVariable’s file. This identifier must have been initialized by a
call to CDF_create_zvar or CDF_get_var_num.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.1.1. Example(s)

The following example closes an open zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

95

INTEGER*4 var_num I Variable identifier.
INTEGER*4 status I Returned status code.

var_num = CDF_get_var_num(id, “MY_VAR?”)
IF (var_num _LT. 0) CALL UserQuit(..)

CALL CDF_close_zvar (id, var_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.2 CDF_confirm_zvar_existence

INTEGER*4 FUNCTION CDF_confirm_zvar_existence (

INTEGER*4 id, ! in -- CDF identifier.
CHARACTER var_name*(*)) !'in -- Variable name.

CDF_ confirm_zvar_existence confirms the existence of a zVariable with the specified name in a CDF. If the
zVariable does not exist, an error code will be returned.

The arguments to CDF_ confirm_zvar_existence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

var_name The variable name.

6.3.2.1. Example(s)

The following example will check the existence of zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status 1 Returned status code.

status = CDF_confirm_zvar_existence (id, “MY_VAR”)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

96

6.3.3 CDF_confirm_zvar_padvalue_exist

INTEGER*4 FUNCTION CDF_confirm_zvar_padvalue_exist (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 var_num) !in -- Variable number.

CDF_ confirm_zvar_padvalue_exist confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO_PADVALUE_SPECIFIED will be returned.

The arguments to CDF_ confirm_zvar_padvalue_exist are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

var_num The variable number.

6.3.3.1. Example(s)

The following example will check the existence of the pad value for zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 var_num I Variable number.
INTEGER*4 status I Returned status code.

var_num = CDF_get_var_num(id, “MY_VAR?”)

IF (var_num _LT. 1) CALL UserQuit(...)

Status = CDF_confirm_zvar_padvalue _exist (id, var_num)
IF (status .NE. NO_PADVALUE_SPECIFIED) THEN

END IF

6.3.4 CDF _create _zvar

SUBROUTINE CDF_create_zvar (

INTEGER*4 id, ! in -- CDF identifier.
CHARACTER var_name*(*), I'in -- zVariable name.
INTEGER*4 data_type, I in -- Data type.

97

INTEGER*4 num_elements,

INTEGER*4 num_dims,
INTEGER*4 dim_sizes(*),
INTEGER*4 rec_variance,

INTEGER*4 dim_variances(*),

INTEGER*4 var_num,
INTEGER*4 status)

in -- Number of elements (of the data type).
in -- Number of dimensions.

in -- Dimension sizes.

i Record variance.

in -- Dimension variances.

out -- zVariable number.

out -- Completion status

=]
1
1

CDF_create_zvar is used to create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_create_zvar are defined as follows:

id

var_name

data_type

num_elements

num_dims

dim_sizes

rec_variance

dim_variances

var_num

status

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The name of the zVariable to create. This may be at most CDF_ VAR_NAME_LEN256
characters. Variable names are case-sensitive.

The data type of the new zVariable. Specify one of the data types defined in Section 4.5.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The zVariable's number of dimension.

The zVariable's dimension sizes. Each element of dim_sizes specifies the number of
values in corresponding dimension. For O-dimensional zVariables this argument is
ignored (but must be present).

The zVariable's record variance. Specify one of the variances defined in Section 4.9.

The zVariable's dimension variances. Each element of dim_variances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional zVariables this argument is ignored (but must
be present).

The number assigned to the new zVariable. This number must be used in subsequent
CDF function calls when referring to this zVariable. An existing zVariables's number
may be determined with the CDF_get_var_num function.

The completion status code. Chapter 8 explains how to interpret status codes.

6.3.4.1. Example(s)

The following example will create several zVariables in a CDF. In this case, EPOCH is a 0-dimensional of
CDF_EPOCH data type, LAT a 1-dimensional of 2 elements of CDF_INT2 data type, LON a 2-dimensional with 2 by
3 of CDF_INT2 data type and TMP a 2 dimensional with 2 by 3 of CDF_REALA4 data type.

98

1

1

1

1

1

INCLUDE “<path>cdf.inc"

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4

id I CDF identifier.

status I Returned status code.
EPOCH_rec_vary EPOCH record variance.
LAT _rec_vary LAT record variance.
LON_rec_vary LON record variance.
TMP_rec_vary TMP record variance.

EPOCH_dim_varys(2)
LAT _dim_varys(2)
LON_dim_varys(2)

EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.

TMP_dim_varys(2) TMP dimension variances.
EPOCH_var_num EPOCH variable number.
LAT _var_num LAT zVariable number.
LON_var_num LON zVariable number.
TMP_var_num I TMP zVariable number.
num_dims_EPOCH, num_dims_LAT, num_dims_LON,
num_dims_TEMP I Number of dimensions.
dim_sizes EPOCH(1), dim_sizes LAT(1),

dim_sizes LON(2), dim_sizes TEMP(2)

I Dimesion sizes.

DATA num_dims_EPOCH/0/, num_dims_LAT/1/,
num_dims_LON/2/, num _dims_TEMP/2/

DATA dim_sizes EPOCH/1/, dim_sizes LAT/3/,
dim_sizes LON/2,3/, dim_sizes TEMP/2,3/

DATA EPOCH_rec_vary/VARY/, LAT rec_vary/NOVARY/,
LON_rec_vary/NOVARY/, TMP_rec_vary/VARY/

DATA EPOCH_dim_varys/NOVARY/, LAT_dim_varys/VARY/,
LON_dim_varys/VARY,VARY/, TMP_dim_varys/VARY,bVARY/

1

1
2

1
2

1
2

1
2

CALL CDF_create_zvar (id, "EPOCH", CDF_EPOCH, 1, num_dims_EPOCH,

dim_sizes EPOCH,
EPOCH_rec_vary, EPOCH _dim varys, POCH_var_num, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_create_zvar (id, "LATITUDE", CDF_INT2, 1, num_dims_LAT,

dim_sizes LAT,
LAT _rec_vary, LAT dim_varys, LAT var_num, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_create_zvar (id, "LONGITUDE", CDF_INT2, 1, num_dims_LON,

dim_sizes LON,
LON_rec_vary, LON_dim_varys, LON_var_num, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_create_zvar (id, "TEMPERATURE®, CDF_REAL4, 1, num_dims_TEMP,

dim_sizes_ TEMP,
TMP_rec_vary, TMP_dim varys, TMP_var_num, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

99

6.3.5 CDF_delete_zvar

SUBROUTINE CDF_delete_zvar (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 var_num, ! in -- zVariable number.
INTEGER*4 status) ! out-- Completion status

CDF_delete_zvar deletes the specified zVariable from a CDF
The arguments to CDF_delete_zvar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.5.1. Example(s)

The following example will delete the zVariable “MY_VAR” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_delete zvar (id, CDF_get var_num(id, “MY_VAR”), status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.6 CDF_delete_zvar_recs

SUBROUTINE CDF_delete_zvar_recs (

100

CDF identifier.
zVariable number.
Starting record number.
- Ending record number.
out -- Completion status

5.
1
1

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 start rec, ! in
1
1

5.
1
1

5.
1

INTEGER*4 end_rec,
INTEGER*4 status)

CDF_delete_zvar_recs deletes a range of data records from the specified zVariable in a CDF
The arguments to CDF_delete_zvar_recs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
start_rec The starting record number to delete.
end_rec The ending record number to delete.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.6.1. Example(s)

The following example will delete 10 records (from record number 10 to 19) from the zVariable “MY_VAR” in a
CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_delete_zvar_recs (id, CDF_get_var_num(id, “MY_VAR?), 10, 19, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.7 CDF_get_num_zvars

SUBROUTINE CDF_get_num_zvars (

INTEGER*4 id, I in -- CDF identifier.
INTEGER*4 vars, I out — Number of zVariabales.
INTEGER*4 status) ! out -- Completion status

CDF_get_num_zvars acquires the total number of zVariables in a CDF.

101

The arguments to CDF_get_num_zvars are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

vars The number of zVariables.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.7.1. Example(s)

The following example acquires the total number of zVariables in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 vars 1 zVariables.
INTEGER*4 status 1 Returned status code.

CALL CDF_get num zvars (id, vars, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.8 CDF_get_var_num

INTEGER*4 FUNCTION CDF_get_var_num (

INTEGER*4 id, Vin-- CDF identifier.
CHARACTER var_name*(*)); !in-- Variable name.

CDF_get_var_num is used to determine the number associated with the specified variable name. If the Variable is
found, CDF_get_var_num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g.,
the Variable does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less than zero

(0).

Initially, this function can only handle rVariables. As the variable name is unique in a CDF file, no two variables, either
rVVariable or zVariable can have the same name. This function is now extended to include zVaribale. The variable
number it returns represents the number in either the r\VVariable group or zVariable group wherever the variable exists.

The arguments to CDF_get_var_num are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

102

varName The name of the Variable for which to search. This may be at most
CDF_VAR_NAME_LEN256 characters. Variable names are case-sensitive.

CDF_get_var_num may be used as an embedded function call when a Variable number is needed. CDF_get_var_num
is declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

6.3.8.1. Example(s)

In the following example CDF_get var_num is used as an embedded function call when inquiring about an rVariable
and a zVariable.

INCLUDE "<path>cdf. inc"

INTEGER*4 id I CDF identifier.

INTEGER*4 status I Returned status code.
CHARACTER var_namel*(CDF_VAR_NAME_LEN256) I rVariable name.
CHARACTER var_name2*(CDF_VAR_NAME_LEN256) 1 zvVariable name.

INTEGER*4 data_typel, data typel
INTEGER*4 num_elemsl, num_elems2

I Data type of the rVariable.
I Number of elements (of the
1 data type).

INTEGER*4 rec_varyl, rec_vary?2 I Record variance.

INTEGER*4 num_dims2 I Number of dimensions
INTEGER*4 dim_sizes2(CDF_MAX DIMS) I Dimension sizes

INTEGER*4 dim_variancesl1(CDF_MAX_DIMS)! Dimension variances.
INTEGER*4 dim_variances2(CDF_MAX_DIMS)! Dimension variances..

CALL CDF_var_inquire (id, CDF_get_var_num(id, "LATITUDE"), var_namel,
1 data_typel, num_elemsl, rec_varyl, dim_variancesl,
2 status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_inquire_zvar (id, CDF_get var_num(id,"LONGITUDE"), var_namel,
1 data_type2, num_elems2, num_dims2, dim_sizes2,
2 rec_vary2, dim_variances2, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

In this example the rVVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDF_get_var_num would have returned an error code. Passing that error code to CDF_inquire_rvar as an
rVariable number would have resulted in CDF_inquire_rvar also returning an error code. Also note that the name
written into var_name is already known (LATITUDE). In some cases the rVariable names will be unknown -
CDF_var_inquire would be used to determine them. CDF_var_inquire is described in Section 5.24.

6.3.9 CDF_get_vars_maxwrittenrecnums

103

SUBROUTINE CDF_get_vars_maxwrittenrecnums (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 rvars_maxrec, I out -- Maximum record number among rVariables.
INTEGER*4 zvars_maxrec, I out -- Maximum record number among zVariables.
INTEGER*4 status) ! out -- Completion status

CDF_get_vars_maxwrittenrecnums inquires the maximum written record numbers among all rVariables and zVariables
in a CDF.

The arguments to CDF_get_vars_maxwrittenrecnums are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

rvars_maxrec Maximum rVariables’s record number.

zvars_maxrec Maximum zVariables’s record number.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.9.1. Example(s)

The following example acquires the maximum record numbers from all rVariables and zVariables in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id I CDF identifier.

INTEGER*4 status I Returned status code.

INTEGER*4 rvars_maxrec I Maximum rVariables®s record number.
INTEGER*4 zvars_maxrec I Maximum zVariables®s record number.

CALL CDF_get vars_maxwrittenrecnums (id, rvars_maxrec, zvars_maxrec, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.10 CDF_get_zvar_allocrecs

SUBROUTINE CDF_get_zvar_allocrecs (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 num_recs,
INTEGER*4 status)

in -- CDF identifier.
in -- zZVariable number.
out -- Number of allocated records.

!
!
!
! out -- Completion status

104

CDF_get_zvar_allocrecs inquires the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for the description of allocating variable records in a single-file CDF.

The arguments to CDF_get_zvar_allocrecs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
Num_recs The number of records allocated for the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.10.1. Example(s)

The following example acquires the number of records allocated for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_recs I Number of allocated records.
INTEGER*4 status I Returned status code.

CALL CDF _get _zvar_allocrecs (id, CDF_get var_num(id, “MY_VAR?),
1 num_recs, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.11 CDF_get_zvar_blockingfactor

SUBROUTINE CDF_get_zvar_blockingfactor (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 bf,
INTEGER*4 status)

! in -- CDF identifier.

! in-- zVariable number.

! out -- Variable blocking factor.

! out -- Completion status

CDF_get_zvar_blockingfactor inquires the blocking factor for the specified zVariable in a CDF. Refer to the CDF
User’s Guide for the description of the blocking factor.

The arguments to CDF_get_zvar_blockingfactor are defined as follows:

105

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
bf The blocking factor of the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.11.1. Example(s)

The following example acquires the blocking factor for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 bTf I Blocking factor.
INTEGER*4 status 1 Returned status code.

CALL CDF _get zvar_blockingfactor (id, CDF _get var_num(id, “MY_VAR?),
1 bf, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.12 CDF_get_zvar_cachesize

SUBROUTINE CDF_get zvar_cachesize (

INTEGER*4 id, ! in-- CDF identifier.

INTEGER*4 var_num, I in -- zVariable number.

INTEGER*4 num_buffers, ! out -- Variable number of cache buffers.

INTEGER*4 status) ! out -- Completion status

CDF_get_zvar_cachesize inquires the number of cache buffers being for the specified zVariable in a CDF. This
operation is not applicable to a single-file CDF. Refer to the CDF User’s Guide for the description about caching
scheme used by the CDF library.

The arguments to CDF_get_zvar_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.

106

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.12.1. Example(s)

The following example acquires the number of cache buffers used for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id 1 CDF identifier.
INTEGER*4 num_buffers! Number of cache buffers.
INTEGER*4 status 1 Returned status code.

CALL CDF_get_zvar_cachesize (id, CDF_get_var_num(id, “MY_VAR?),

1

num_buffers, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.13 CDF_get_zvar_compression

SUBROUTINE CDF_get_zvar_compression (

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 compress_type, !
INTEGER*4 compress_parms, !
INTEGER*4 compress_percent, !
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.

out -- Compression type.

out -- Compression parameters.
out -- Compression percentage.
out -- Completion status

CDF_get_zvar_compression inquires the compression type/parameters of the specified zVariable in a CDF. Refer to
Section 4.10 for the description of the CDF supported compression types/parameters.

The arguments to CDF_get_zvar_compression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or

CDF_open_cdf.

var_num The zVariable number.

compress_type The compression type.

compress_parms The compression parameters.

107

compress_percent The compression percentage.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.13.1. Example(s)

The following example acquires the compression type/paramters for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc*

CDF identifier.
Compression type.
Compression parameters.
Compression percentage.
Returned status code.

INTEGER*4 1id

INTEGER*4 ctype

INTEGER*4 cparms(CDF_MAX_DIMS)
INTEGER*4 cpercent

INTEGER*4 status

CALL CDF_get zvar_compression (id, CDF_get var_ num(id, “MY_VAR?”),
1 ctype, cparms, cpercent, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.14 CDF_get_zvar_data

SUBROUTINE CDF _get zvar_data (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 var_num, Iin -- zVariable number.

INTEGER*4 rec_num, I in -- Record number.

INTEGER*4 indices(*), I'in -- Dimension indices.

<type> value, I out -- Value (<type> is dependent on the data type of the zVariable).
]

INTEGER*4 status) out -- Completion status

CDF_get_zvar_data is used to read a single value from a zVariable. CDF_hyper_get zvar_data may be used to read
more than one zVariable values with a single call (see Section 6.3.33).

The arguments to CDF_get_zvar_data are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

rec_num The record number at which to read.

108

indices

value

status

6.3.14.1.

The array indices within the specified record at which to read. Each element of indices
specifies the corresponding dimension index. For 0-dimensional zVariables this argument is
ignored (but must be present).

The value read. This buffer must be large enough to hold the value. CDF_inquire_zvar
would be used to determine the zVariable's data type and number of elements (of that data
type) at each value. The value is read from the CDF and placed at memory address value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the zZVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example reads and hold an entire record of data from zVariable “Temperature” in a CDF. This
zVariable is 3-dimensional with sizes [180,91,10]. The record variance is VARY, the dimension variances are
[VARY,VARY ,VARY], and the data type is CDF_REALA4.

INCLUDE *<path>

INTEGER*4 id

INTEGER*4 statu
REAL*4 tmp(180,
INTEGER*4 indic
INTEGER*4 var_n
INTEGER*4 rec_n
INTEGER*4 di1, d

var_n = CDF_get
IF (var_n .LT.

rec_num = 13

DO d1 = 1, 180
indices(l) =
DO d2 =1, 91

indices(2)
DO d3 =1,

cdf.inc”

CDF identifier.
Returned status code.
Temperature values.
Dimension indices.
zVariable number.
Record number.
Dimension index values.

s
91,10)
es(3)

um
2, d3

_var_num (id, "Temperature®)

1) CALL UserStatusHandler (var_n) 1 If less than one (1),
I then it is actually a
I warning/error code.

di

= d2
10

indices(3) = d3
CALL CDF _get zvar_data (id, var_n, rec_num, indices, tmp(dl,d2,d3),

status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

END DO
END DO
END DO

109

6.3.15 CDF_get_zvar_datatype

SUBROUTINE CDF_get_zvar_datatype (

in -- CDF identifier.
in -- zVariable number.
out -- Data type.

out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 data_type,

!
!
!
INTEGER*4 status) !

CDF_get_zvar_datatype is used to acquires the data type of the specified zVariable in a CDF. Refer to Section 4.5 for
the description of the CDF data types.

The arguments to CDF_get_zvar_datatype are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

data_type The data type of the variable data.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.15.1. Example(s)

The following example acquires the data type of zVariable “Temperature” in a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 data_type I Data type.

CALL CDF _get zvar_datatype (id, CDF_get var_num (id, "Temperature-®),
1 data_type, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

110

6.3.16 CDF_get_zvar_dimsizes

SUBROUTINE CDF_get_zvar_dimsizes (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 dim_sizes(*),
INTEGER*4 status)

!'in -- CDF identifier.

1'in -- zVariable number.

! out -- Dimension sizes.

! out -- Completion status

CDF_get_zvar_dimsizes acquires the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.

The arguments to CDF_get_zvar_dimsizes are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num zVariable number.

dim_sizes Dimension sizes.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.16.1. Example(s)

The following example acquires the dimension sizes for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 dim_sizes(CDF_MAX_DIMS) I Dimension sizes.

CALL CDF_get_zvar_dimsizes (id, CDF_get var_num(id, “MY_VAR?), dim_sizes,
1 status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.17 CDF_get _zvar_dimvariances

SUBROUTINE CDF_get_zvar_dimvariances (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var_num, !'in -- zVariable number.
INTEGER*4 dim_varys(*), ! out -- Dimension variances.

111

INTEGER*4 status) ! out -- Completion status

CDF_get_zvar_dimvariances acquires the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. Refer to Section 4.9 for the description of the CDF variable’s dimension
variances.

The arguments to CDF_get_zvar_dimvariances are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

dim_varys The dimension variances.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.17.1. Example(s)

The following example acquires the dimension variances for zVariable “Temperature” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 dim_varys(CDF_MAX_DIMS)! Dimension variances.

CALL CDF _get zvar_dimvariances (id, CDF _get _var _num (id, "Temperature®),
1 dim_varys, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.18 CDF_get_zvar_maxallocrecnum

SUBROUTINE CDF_get_zvar_maxallocrecnum (

in -- CDF identifier.

in -- zVariable number.

out -- Maximum allocated record number.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_num,

!
!
!
INTEGER*4 status) !

CDF_get_zvar_maxallocrecnum acquires the maximum record number allocated for the specified zVariable in a CDF.

The arguments to CDF_get_zvar_maxallocrecnum are defined as follows:

112

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

rec_num The maximum record number allocated.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.18.1. Example(s)

The following example acquires the maximum record number allocated for zVariable “Temperature” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 rec_num I Maximum allocated record number.

CALL CDF_get_zvar_maxallocrecnum (id, CDF_get var_num (id, "Temperature-®),
1 rec_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.19 CDF_get_zvar_maxwrittenrecnum

SUBROUTINE CDF_get_zvar_maxwrittenrecnum (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_num,
INTEGER*4 status)

in -- CDF identifier.

in -- zVariable number.

out -- Maximum written record number.
out -- Completion status

!
!
!
!
CDF_get_zvar_maxwrittenrecnum acquires the maximum record number written for the specified zVariable in a CDF.
The arguments to CDF_get_zvar_maxwrittenrecnum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

rec_num The maximum record number written.

113

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.19.1. Example(s)

The following example acquires the maximum record number written for zVariable “Temperature” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 rec_num I Maximum written record number.

CALL CDF_get_zvar_maxwrittenrecnum (id, CDF_get var_num (id, "Temperature-®),
1 rec_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.20 CDF_get_zvar_name

SUBROUTINE CDF_get_zvar_name (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 var_num, I'in -- zVariable number.

CHARACTER var_name*(*), ! out -- zVariable name.
!

INTEGER*4 status) out -- Completion status
CDF_get_zvar_name acquires the name of the specified zVariable, by its number, in a CDF.
The arguments to CDF_get_zvar_name are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

var_name The name of the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.20.1. Example(s)

The following example acquires the name of the zVariable, numbered 2 in the zVariable group, in a CDF.

114

INCLUDE *<path>cdf.inc"

CDF identifier.
Returned status code.
zVariable number.
zVariable name.

INTEGER*4 id

INTEGER*4 status

INTEGER*4 var_num

INTEGER*4 var_name*(CDF_VAR_NAME_LEN256)

rec_num = 2
CALL CDF_get_zvar_name (id, var_num, var_name, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.21 CDF_get_zvar_numdims

SUBROUTINE CDF_get_zvar_numdims (

in -- CDF identifier.

in -- zVariable number.

out -- Number of dimensions.
out -- Completion status

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 num_dims, !
INTEGER*4 status) !

CDF_get_zvar_numdims acquires the number of dimensions for the specified zVariable in a CDF.

The arguments to CDF_get_zvar_numdims are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num zVariable number.

num_dims Number of dimensions.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.21.1. Example(s)

The following example acquires the number of dimensions for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 num_dims I Dimension sizes.

115

CALL CDF_get_zvar_numdims (id, CDF_get_var_num(id, “MY_VAR”), num_dims,
1 status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.22 CDF_get_zvar_numelems

SUBROUTINE CDF_get_zvar_numelems (

in -- CDF identifier.

in -- zVariable number.
out -- Number of elements.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 num_elems,

!
!
!
INTEGER*4 status) !

CDF_get_zvar_numelems acquires the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the humber of characters in the string.
(Each value consists of the entire string.) For other data types, the number of elements will always be one (1).

The arguments to CDF_get_zvar_numelems are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

num_elems The number of elements.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.22.1. Example(s)

The following example acquires the number of elements for the data values for zVariable “Temperature” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 num_elems I Number of elements.

CALL CDF _get zvar_numelems (id, CDF_get var_num (id, "Temperature-®),
1 num_elems, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

116

6.3.23 CDF_get_zvar_numrecs_written

SUBROUTINE CDF_get_zvar_numrecs (

in -- CDF identifier.

in -- zVariable number.

out -- Number of written records.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 num_records,

!
!
!
INTEGER*4 status) !

CDF_get_zvar_numrecs_written acquires the number of records written for the specified zVariable in a CDF. This
number may not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDF_get_zvar_numrecs_written are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

num_records The number of written records.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.23.1. Example(s)

The following example acquires the number of written records for zVariable “Temperature” in a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id I CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 num_records I Number of written records.

CALL CDF _get _zvar_numrecs_written (id, CDF _get var_num (id, "Temperature®),
1 num_records, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

117

6.3.24 CDF_get_zvar_padvalue

SUBROUTINE CDF_get_zvar_padvalue (

INTEGER*4 id, !'in -- CDF identifier.

INTEGER*4 var_num, !'in -- zVariable number.

<type> pad_value, I out -- Pad value.

INTEGER*4 status) ! out -- Completion status

CDF_get_zvar_padvalue acquires the pad value of the specified zVariable in a CDF. If a pad value has not been
explicitly specified for the zVariable through CDF_set_zvar_padvalue or something similar from the Internal Interface
function, the informational status code NO_PADVALUE_SPECIFIED will be returned and the default pad value for
the variable’s data type will be placed in the pad value buffer provided.

The arguments to CDF_get_zvar_padvalue are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

pad_value The pad value.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.24.1. Example(s)

The following example acquires acquire the pad value from zVariable “MY_VAR”, a CDF_INT4 type variable in a
CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 pad_value I Pad value.

CALL CDF_get zvar_padvalue (id, CDF_get var_num (id, *"MY_VAR"),
1 pad_value, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.25 CDF_get_zvar_recorddata

SUBROUTINE CDF_get zvar_recorddata (

118

INTEGER*4 id, in -- CDF identifier.
INTEGER*4 var_num, in -- zVariable number.

]

!
INTEGER*4 rec_num, I in -- Record number.
<type> buffer, ! out -- Record data buffer.
INTEGER*4 status) ! out -- Completion status
CDF_get_zvar_recorddata acquires an entire record at a given record number for the specified zVariable in a CDF.
The buffer should be large enough to hold the entire data values for the variable. The retrieved data values in the buffer
are in the order that corresponds to the variable majority defined for the CDF.

The arguments to CDF_get_zvar_recorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

rec_num The record number of the zVariable from which to read.
buffer The record buffer to hold the data values from an entire record.
status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.25.1. Example(s)

The following example acquires an entire record, at numbered 5, for zVariable “MY_VAR?”, a 2-dimensional variable
(2 by 3) of CDF_INT4 type type, in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 buffer(2,3) I Record buffer.

CALL CDF_get_zvar_recorddata (id, CDF_get var_num (id, "MY_VAR"), 5,
1 buffer, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.26 CDF _get_zvar_recvariance

SUBROUTINE CDF_get_zvar_recvariance (

INTEGER*4 id, !in -- CDF identifier.

119

INTEGER*4 var_num, I'in -- zVariable number.
INTEGER*4 rec_vary, ! out -- Record variance.
INTEGER*4 status) ! out -- Completion status

CDF_get_zvar_recvariance acquires the record variance of the specified zVariable in a CDF. Refer to Section 4.9 for
the description of the CDF variable’s record variance.

The arguments to CDF_get_zvar_recvariance are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

rec_vary The record variance.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.26.1. Example(s)

The following example acquires the record variance for zVariable “Temperature” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 rec_vary I Record variance.

CALL CDF _get zvar_recvariance (id, CDF_get var_num (id, "Temperature®),
1 rec_vary, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.27 CDF_get_zvar_reservepercent

SUBROUTINE CDF _get zvar_reservepercent (

INTEGER*4 id, !'in -- CDF identifier.
INTEGER*4 var_num, I'in -- zVariable number.
INTEGER*4 res_percent, ! out -- Reserve percentage.
INTEGER*4 status) ! out -- Completion status

CDF_get_zvar_reservepercent acquires the reserve percentage being used for the specified zVariable in a CDF. This

operation only applies to compressed zVariables. Refer to the CDF User’s Guide for the description of the reserve
scheme used by the CDF library.

120

The arguments to CDF_get_zvar_reservepercent are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

res_percent The reserve percentage.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.27.1. Example(s)

The following example acquires the reserve percentage for the compressed zVariable “Temperature” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 res_percent 1 Reserve percentage.

CALL CDF_get_zvar_reservepercent (id, CDF_get var_num (id, "Temperature-®),
1 res_percent, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.28 CDF_get zvar_seqdata

SUBROUTINE CDF_get_zvar_seqdata (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var_num, ! in -- zVariable number.
<type> value, I out -- Data value.
INTEGER*4 status) ! out -- Completion status

CDF_get_zvar_seqdata reads one data value at the current sequential value for the specified zVariable in a CDF. After
the read, the current sequential value is automatically incremented to the next value. An error is returned if the current
sequential value is past the last record of the zVariable. Use CDF_set zvar_seqpos and CDF_get zvar_seqpos
subroutine calls to set and get the current sequential value (position) for the variable.

The arguments to CDF_get_zvar_seqdata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

121

var_num The zVariable number.
value The data value buffer.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.28.1. Example(s)

The following example reads two data values from the beginning of record (numbered 2) from a zVariable, a 2-
dimensional CDF_INT4 type variable, in a CDF.

INCLUDE *<path>cdf.inc"

CDF identifier.
Returned status code.
Variable number.
Variable data values.
Record number.
Dimension indices.

INTEGER*4 id

INTEGER*4 status
INTEGER*4 var_num
INTEGER*4 valuel, value2
INTEGER*4 rec_num
INTEGER*4 indices(2)

rec_num = 2

indices(1) = 0

indices(2) = 0

CALL CDF_set_zvar_segpos (id, var_num, rec_num, indices, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_get_zvar_seqdata (id, var_num, valuel, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
CALL CDF _get zvar_seqdata (id, var_num, value2, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.29 CDF_get _zvar_seqgpos

SUBROUTINE CDF_get_zvar_seqpos (

INTEGER*4 id, in -- CDF identifier.
INTEGER*4 var_num, in -- zVariable number.

]

!
INTEGER*4 rec_num, I out -- Record number.
INTEGER*4 indices(*), ! out -- Indices in a record.
INTEGER*4 status) ! out -- Completion status
CDF_get_zvar_seqpos acquires the current sequential value (position) for sequential access for the specified zVariable
in a CDF. Note that a current sequential calue is maintained for each zVariable individually. Use
CDF_get_zvar_seqdata subroutine to get the data value.

122

The arguments to CDF_get_zvar_seqpos are defined as follows:

id

var_num
rec_num

Indices

status

6.3.29.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The zVariable number.
The record number.

The dimension indices. Each element of indices receives the corresponding dimension
index. For O-dimensional zVariable, this argument is ignored, but must be presented.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example inquires the location for the current sequential value, the record number and indices within it,
from a a 2-dimensional zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id

1 CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 rec_num I Record number.
INTEGER*4 indices(2) I Dimension indices.

CALL CDF _get zvar_seqpos (id, CDF_get var_num(id, “MY_VAR”), rec_num,

1

indices, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.30 CDF_get_zvars_maxwrittenrecnum

SUBROUTINE CDF_get_zvars_maxwrittenrecnum (

INTEGER*4 id,
INTEGER*4 rec_num,
INTEGER*4 status)

!'in -- CDF identifier.
I out -- Maximum record number.
! out -- Completion status

CDF_get_zvars_maxwrittenrecnum acquires the maximum written record number among all of the zVariables in a
CDF. A value of zero (0) indicates that zVariables contain no records. The maximum record number for an individual
zVariable may be acquired using the CDF_get_zvar_maxwrittenrecnum funcatron call.

The arguments to CDF_get_zvars_maxwrittenrecnum are defined as follows:

123

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

rec_num The maximum record number among all zVariables.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.30.1. Example(s)

The following example acquires the maximum written record number among all zVariables in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 rec_num 1 Record number.

CALL CDF_get zvars_maxwrittenrecnum (id, rec_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.31 CDF_get_zvar_sparserecords

SUBROUTINE CDF_get_zvar_sparserecords (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 srecords_type,
INTEGER*4 status)

1'in -- CDF identifier.

1'in -- zVariable number.

! out -- Sparse records type.

! out -- Completion status

CDF_get_zvar_sparserecords acquires the sparse records type of the specified zVariable in a CDF. Refer to Section
4.11 for the description of the sparse records.

The arguments to CDF_get_zvar_sparserecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num zVariable number.

srecords_type Sparse records type.

status The completion status code. Chapter 8 explains how to interpret status codes.

124

6.3.31.1. Example(s)

The following example inquires the sparse records type for zVariable ‘MY_VAR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id

1 CDF identifier.

INTEGER*4 srecords_type I Sparse records type.

INTEGER*4 num_dims

I Dimension sizes.

CALL CDF_get_zvar_sparserecrods (id, CDF_get var_num(id, “MY_VAR™),

1

srecords_type, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.32 CDF_get_zvars_recorddata

SUBROUTINE CDF_get_zvars_recorddata(

INTEGER*4 id, !
INTEGER*4 num_var, !
INTEGER*4 var_nums(*), !
INTEGER*4 rec_num, !
<type> buffer, !

|

|

INTEGER*4 status

in -- CDF identifier.

in -- Number of zVariables.

in -- zVariable numbers.

in -- Record number.

out -- First variable buffer in a common block (<type> depends
on the data type of the zVariable).

out -- Completion status.

CDF_get_zvars_recorddata is used to read a full record data at a specific record number for a selected group of
zVariables in a CDF. It expects that the data buffer for each zVariable is big enough to hold a full physical record® data

and properly put in a common block.

No space is needed for each zVariable's non-variant dimensional elements.

Retrieved record data from the variable group is filled into respective zVariable's buffer.

The arguments to CDF_get_zvars_recorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the zVariables in the group involved this read operation.

var_nums The numbers of the zVariables involved for which to read a whole record data.

rec_num The record number at which to read the whole record data for the group of zVariables.
buffer The first variable buffer to read in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

¥ Physical record is explained in the Primer chapter in the CDF User's Guide.

125

6.3.32.1. Example(s)

The following example will read an entire single record data for a group of zZVariables. The zVariables involved in the
read are Time, Longitude, Delta, Temperature and NAME. The record to read is 4. Since Temperature is 0-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for
their dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-
dimensional array of CHARACTER*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR
data type with the numeber of element 10.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time(3,2) ! Datatype: UINT4.

! Rec/dim variances: T/TT.
INTEGER*4 delta(3,2) ! Datatype: INT4 .

! Rec/dim variances: T/TT.
INTEGER*2 longitude(3) ! Datatype: INT2.

! Rec/dim variances: T/T.
REAL*4 temperature I Datatype: FLOAT.

! Rec/dim variances: T/.

! Datatype: CHAR/10.

! Rec/dim variances: T/T.
COMMON /BLK/delta, time, temperature, longitude, name

CHARACTER*10 name(2)

num_var =5
rec num=4

I Number of zVariables
! Record number to read

status = CDF_LIB (GET_, zVAR_NUMBER _, 'Delta’, var_nums(1),

1 NULL _, status)

IF (var_nums(1) .LT. 1)

I zVariable number
1'If less than one (1),

x CALL UserStatusHandler (var_nums(1)) ! then it is actually a

' warning/error code.

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Time', var_nums(2),

1 NULL_, status)

IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

status = CDF_LIB (GET_, zVAR_NUMBER _, 'Longitude', var_nums(3),

1 NULL _, status)

IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Temperature', var_nums(4),

1 NULL _, status)

126

IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET_, zVAR_NUMBER_, 'NAME', var_nums(5),

1 NULL_, status)

IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var_nums(5))

CALL CDF_get_zvars_recorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, 1-byte. Unexpected results may return if
such ordering is not followed. This function can be a replacement for the similar functionality provided from the
Internal Interface as <GET _, zZVARs_RECDATA >.

6.3.33 CDF_hyper_get_zvar_data

SUBROUTINE CDF_hyper_get_zvar_data (

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 rec_start, !
INTEGER*4 rec_count, !
INTEGER*4 rec_interval, !
INTEGER*4 indices(*), !
INTEGER*4 counts(*), !
INTEGER*4 intervals(*), !
<type> buffer, !
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.

in -- Starting record number.

in -- Number of records.

in -- Subsampling interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.

in -- Subsampling intervals along each dimension.

in -- Buffer of values (<type> is dependent on the data type of the zVariable).
out -- Completion status

CDF_hyper_get _zvar_data is used to read a buffer of one or more values from a zVariable. It is important to know the
variable majority of the CDF before using CDF_hyper_get_zvar_data because the values placed into the buffer will be
in that majority. CDF_inquire can be used to determine the default variable majority of a CDF distribution. The
Concepts chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_hyper_get_zvar_data are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

rec_start The record number at which to start reading.

rec_count The number of records to read.

rec_interval The interval between records for subsampling (e.g., an interval of 2 means read every other

record).

127

indices

counts

intervals

buffer

status

6.3.33.1.

The indices (within each record) at which to start reading. Each element of indices specifies the
corresponding dimension index. If there are zero (0) dimensions, this argument is ignored (but
must be present).

The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For O-dimensional zVariables this argument is ignored (but
must be present).

For each dimension, the interval between values for subsampling (e.g., an interval of 2 means
read every other value). Each element of intervals specifies the corresponding dimension
interval. For O-dimensional zVariables, this argument is ignored (but must be present).

The buffer of values read. The majority of the values in this buffer will be the same as that of the
CDF. This buffer must be large to hold the values. CDF_var_inquire would be used to
determine the zVariable's data type and number of elements (of that data type) at each value.
The values are read from the CDF and placed into memory starting at address buffer.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the zVariable does not
have one of the character data types, then value must NOT be a CHARACTER Fortran variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example reads an entire record of data from zVariable “Temperature” in a CDF. This zVariable is 3-
dimensional with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. The record variance is VARY, the
dimension variances are [VARY,VARY,VARY], and the data type is CDF_REALA4. This example is similar to the
example in Section 6.3.33 except that it uses a single call to CDF_hyper_get_zvar_data rather than numerous calls to

CDF_get_zvar_data.

INCLUDE "<path>cdf.inc*

INTEGER*4 id
INTEGER*4 status

CDF identifier.
Returned status code.

REAL*4 tmp(180,91,10)
INTEGER*4 var_n

Temperature values.
rVariable number.

INTEGER*4 rec_start Record number.

INTEGER*4 rec_count Record counts.

INTEGER*4 rec_interval Record interval.
INTEGER*4 indices(3) I Dimension indices.
INTEGER*4 counts(3) I Dimension counts.
INTEGER*4 intervals(3) I Dimension intervals.

DATA rec_start/13/, rec_count/l1/, rec_interval/l/,

1 indices/1,1,1/, counts/180,91,10/,

intervals/1,1,1/

var_n = CDF_get var_num (id, "Temperature®)

IF (var_n .LT. 1) CALL UserStatusHandler (var_n) !

IT less than one (1),
I then it is actually a

128

I warning/Zerror code.

CALL CDF_hyper_get _zvar_data (id, var_n, rec_start, rec_count, rec_interval,
1 indices, counts, intervals, tmp, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

Note that if the CDF's variable majority had been ROW_MAJOR, the tmp array would have been declared REAL*4
tmp[10][91][180] for proper indexing.

6.3.34 CDF_hyper_put_zvar_data

SUBROUTINE CDF_hyper_put_zvar_data (

INTEGER*4 id,
INTEGER*4 var_num,

!in -- CDF identifier.

!'in -- zVariable number.

INTEGER*4 rec_start, I in -- Starting record number.

INTEGER*4 rec_count, 1in -- Number of records.

INTEGER*4 rec_interval, I in -- Interval between records.

INTEGER*4 indices(*), I'in -- Dimension indices of starting value.

INTEGER*4 counts(*), I'in -- Number of values along each dimension.

INTEGER*4 intervals(*), I in -- Interval between values along each dimension.

<type> buffer, I in -- Buffer of values (<type> is dependent on the data type of the zVariable).
INTEGER*4 status) ! out -- Completion status

CDF_hyper_put_zvar_data is used to write a buffer of one or more values to a zVariable. It is important to know the
variable majority of the CDF before using CDF_hyper_put _zvar_data because the values in the buffer to be written
must be in the same majority. CDF _inquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_hyper_put_zvar_data are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

var_num The number of the zVariable to which to write. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

rec_start The record number at which to start writing.
rec_count The number of records to write.
rec_interval The interval between records for subsampling* (e.g., An interval of 2 means write to every

other record).

indices The indices (within each record) at which to start writing. Each element of indices specifies
the corresponding dimension index. If there are zero (0) dimensions, this argument is ignored
(but must be present).

* »Subsampling" is not the best term to use when writing data, but you should know what we mean.

129

counts

intervals

buffer

status

6.3.34.1.

The following example

The number of values along each dimension to write. Each element of count specifies the
corresponding dimension count. For 0-dimensional zVariables this argument is ignored (but
must be present).

For each dimension the interval between values for subsampling® (e.g., an interval of 2 means
write to every other value). intervals is a 1-dimensional array containing one element per
zVariable dimension. Each element of intervals specifies the corresponding dimension
interval. For O-dimensional zVariables this argument is ignored (but a place holder is
necessary).

The buffer of values to write. The majority of the values in this buffer must be the same as
that of the CDF. The values starting at memory address buffer are written to the CDF.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

writes values to the zVariable LATITUDE of a CDF. This zVariable is 2-dimensional with

dimension sizes [360,181]. The record variance is NOVARY, the dimension variances are [NOVARY,VARY], and the

data type is CDF_INT2.

This example is similar to the example in Section 6.3.34

except that it uses a single call to CDF_hyper_put_zvar_data rather than numerous calls to CDF_put_zvar_data.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status
INTEGER*2 lat
INTEGER*2 lats(181)
INTEGER*4 var_n
INTEGER*4 rec_start
INTEGER*4 rec_count
INTEGER*4 rec_interval
INTEGER*4 indices(2)
INTEGER*4 counts(2)
INTEGER*4 intervals(2)

CDF identifier.
Returned status code.
Latitude value.
Buffer of latitude values.
zVariable number.
Record number.

Record counts.

Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

DATA rec_start/1/, rec_count/1/, rec_interval/l/,
1 indices/1,1/, counts/1,181/, intervals/1,1/

var_n = CDF_get var_num (id, "LATITUDE")

IF (var_n .LT. 1) CALL UserStatusHandler (var_n)

1 If less than one (1),
I then not a zVariable
I number but rather a

I warning/error code

® Again, not the best term.

130

DO lat = -90, 90
lats(91+lat) = lat

END DO

CALL CDF_hyper_put_zvar _data (id, var_n, rec_start, rec_count, rec_interval,

1

indices, counts, intervals, lats, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.35 CDF_inquire_zvar

SUBROUTINE CDF_inquire_zvar (

INTEGER*4 id,

INTEGER*4 var_num,

'in -- CDF identifier.
I'in -- zVariable number.

CHARACTER var_name*(CDF_VAR_NAME_LEN256), ! out-- zVariable name.

INTEGER*4 data_type,

INTEGER*4 num_elements,

INTEGER*4 num_dims,

INTEGER*4 dim_sizes(CDF_MAX_DIMS),
INTEGER*4 rec_variance,

INTEGER*4 dim_variances(CDF_MAX_DIMS),
INTEGER*4 status)

I out -- Data type.

out -- Number of elements (of the data type).
out -- Number of dimensions.

out -- Dimension sizes.

out -- Record variance.

out -- Dimension variances.

1
1
|
|
!
! out -- Completion status

CDF_inquire_zvar is used to inquire about the specified zVariable. This subroutine would normally be used before
reading zVariable values (with CDF_get zvar_data or CDF_hyper_get zvar_data) to determine the data type and
number of elements (of that data type).

The arguments to CDF_inquire_zvar are defined as follows:

id

var_num

var_name

data_type

num_elements

num_dims

dim_sizes

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open.

The number of the zVariable to inquire. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

The zVariable's name. This character string must be large enough to hold
CDF_VAR_NAME_LEN256 characters and will be blank padded if necessary.

The data type of the zVariable. The data types are defined in Section 4.5.

The number of elements of the data type at each zVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The number of dimensions.

The dimension sizes. It is a 1-dimensional array, containing one element per dimension.

Each element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariable this argument is ignored (but must be present).

131

rec_variance The record variance. The record variances are defined in Section 4.9.

dim_variances The dimension variances. Each element of dim_variances receives the corresponding
dimension variance. The dimension variances are defined in Section 4.9. For O-
dimensional zVariable this argument is ignored (but must be present).

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.35.1. Example(s)

The following example inquires about a zVariable named HEAT_FLUX in a CDF. Note that the zVariable name
returned by CDF_inquire_zvar will be the same as that passed in to CDF_get_var_num.

INCLUDE *<path>cdf. inc"

INTEGER*4 id
INTEGER*4 status

1 CDF identifier.
I Returned status code.

CHARACTER var_name*(CDF_VAR_NAME_LEN256 I zVariable name.

INTEGER*4 data_type
INTEGER*4 num_elems
INTEGER*4 rec_vary

INTEGER*4 dim_varys(CDF_MAX_DIMS)

INTEGER*4 num_dims

INTEGER*4 dim_sizes(CDF_MAX_DIMS)

I Data type.

Number of elements (of data type).
Record variance.

Dimension variances (allocate to
allow the maximum number of
dimensions).

Number of dimensions.

Dimension sizes (allocate to
allow the maximum number of
dimensions).

éALL CDF_inquire_zvar (id, CDF_get_var_num(id, "HEAT_FLUX"), var_name,

1
2

data_type, num_elems, rec _vary, dim_varys,
num_dims, dim_sizes, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.36 CDF_put_zvar_data

SUBROUTINE CDF_put_zvar_data (

INTEGER*4 id,
INTEGER*4 var_num,

INTEGER*4 indices(*),
<type> value,
INTEGER*4 status)

!

!
INTEGER*4 rec_num, [

!

!

!

in -- CDF identifier.
in -- zVariable number.
in -- Record number.
in -- Dimension indices.

in -- Value (<type> is dependent on the data type of the zVariable).
out -- Completion status

132

CDF_put_zvar_data is used to write a single value for a zVariable. CDF_hyper_put_zvar_data may be used to write
more than one zVariable values with a single call (see Section 6.3.34).

The arguments to CDF_put_zvar_data are defined as follows:

id

var_num

rec_num

indices

value

status

6.3.36.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The number of the zVariable to which to write. This number may be determined with a call
to CDF_get_var_num (see Section 6.3.8).

The record number at which to write.

The array indices within the specified record at which to write. Each element of indices
specifies the corresponding dimension index. For 0-dimensional zVariables this argument is
ignored (but must be present).

The value to write. This buffer must be large enough to hold the value. CDF _inquire_zvar
would be used to determine the zVariable's data type and number of elements (of that data
type) at each value. The value is written to the CDF.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the zVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example writes an entire record of data to zVariable “Temperature”. This zVariable is 3-dimensional
with sizes [180,91,10]. The record variance is VARY, the dimension variances are [VARY,VARY,VARY], and the

data type is CDF_REALA4.

INCLUDE *<path>

INTEGER*4 id

INTEGER*4 statu
REAL*4 tmp(180,
INTEGER*4 indic
INTEGER*4 var_n
INTEGER*4 rec_n
INTEGER*4 di1, d

cdf.inc”

CDF identifier.
Returned status code.
Temperature values.
Dimension indices.
zVariable number.
Record number.
Dimension index values.

s
91,10)
es(3)

um
2, d3

var_n = CDF_get _var_num (id, "Temperaturev)

IF (var_n .LT.

rec_num = 13

1) CALL UserStatusHandler (var_n) I If less than one (1),
I then it is actually a
I warning/error code.

. Ffilled tmp array

133

DO d1 = 1, 180
indices(l) = d1
DO d2 =1, 91
indices(2) = d2
DO d3 =1, 10
indices(3) = d3
CALL CDF_put_zvar_data (id, var_n, rec_num, indices, tmp(dl,d2,d3),

1 status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
END DO
END DO
END DO

6.3.37 CDF_put_zvar_recorddata

SUBROUTINE CDF_put_zvar_recorddata (

INTEGER*4 id, 1in -- CDF identifier.

INTEGER*4 var_num, I'in -- zVariable number.

INTEGER*4 rec_num, 1in -- Record number.

<type> buffer, I in -- Record data buffer.
1

INTEGER*4 status) out -- Completion status

CDF_put_zvar_recorddata writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values for the variable. The written data values in the buffer are in
the order that corresponds to the variable majority defined for the CDF.

The arguments to CDF_put_zvar_recorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable to which to write. This number may be determined with a call
to CDF_get_var_num (see Section 6.3.8).

rec_num The record number of the zVariable to which to write.
buffer The record buffer to hold the data values for an entire record.
status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.37.1. Example(s)

The following example writes an entire record (numbered 5) for zVariable “MY_VAR?”, a 2-dimensional variable (2 by
3) of CDF_INT4 type type, in a CDF.

134

INCLUDE “<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 buffer(2,3) I Record buffer.

. Fill buffer array

CALL CDF_put_zvar_recorddata (id, CDF_get var_num (id, "MY_VAR"), 5,
1 buffer, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.38 CDF_put_zvar_seqdata

SUBROUTINE CDF_put_zvar_seqdata (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var_num, ! in -- zVariable number.
<type> value, I in -- Data value.
INTEGER*4 status) ! out -- Completion status

CDF_put_zvar_seqdata writes one data value at the current sequential value for the specified zVariable in a CDF.
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the zVariable. Use CDF_get_zvar_seqpos and CDF_set_zvar_seqpos
subroutine calls to get and set the current sequential value (position) for the variable.

The arguments to CDF_put_zvar_seqdata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The zVariable number.

value The data value.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.38.1. Example(s)

The following example writes two data values from the beginning of record (numbered 2) to a zVariable, a 2-
dimensional CDF_INT4 type variable, in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

135

INTEGER*4 status
INTEGER*4 var_num
INTEGER*4 valuel, value2
INTEGER*4 rec_num
INTEGER*4 indices(2)

Returned status code.
Variable number.
Variable data values.
Record number.
Dimension indices.

rec_num = 2

indices(1l) = 0

indices(2) = 0

CALL CDF_set_zvar_seqgpos (id, var_num, rec_num, indices, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
valuel = 10

value2 = 20

CALL CDF_put_zvar_seqdata (id, var_num, valuel, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
CALL CDF _put_zvar_seqdata (id, var_num, value2, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.39 CDF_put_zvars_recorddata

SUBROUTINE CDF_put_zvars_recorddata(

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 num_var, 1'in -- Number of zVariables.

INTEGER*4 var_nums(*), I in --zVariable numbers.

INTEGER*4 rec_num, I'in -- Record number.

<type> buffer, 1 in -- First variable buffer in a common block (<type> depends
! on the data type of the zVariable).

INTEGER*4 status) I out -- Completion status.

CDF_put_zvars_recorddata is used to write a full record data at a specific record number for a selected group of

zVariables in a CDF. It expects that the data buffer for each zVariable is big enough to contain a full physical record

data and properly put in a common block. No space is expected for each zVariable's non-variant dimensional elements.

Record data from each buffer is written to its respective zVariable.

The arguments to CDF_put_zvars_recorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the zVariables in the group involved this write operation.

var_nums The numbers of the zVariables involved for which to write a whole record data.

rec_num The record number at which to write the whole record data for the group of zVariables.
buffer The first variable buffer to write in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

136

6.3.39.1. Example(s)

The following example will write an entire single record data for a group of zVariables. The zVariables involved in the
write are Time, Longitude, Delta, Temperature and NAME. The record to write is 4. Since Temperature is 0-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for
their dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-
dimensional array of CHARACTER™*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR
data type with the numeber of element 10.

INCLUDE '<path>cdf.inc'

INTEGER*4 id | CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var I Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time(3,2) ! Datatype: UINT4.

1 /10, 20, ! Rec/dim variances: T/TT.
2 30, 40,

3 50, 60/

INTEGER*4 delta(3,2) ! Datatype: INT4 .

1 /1,2, ! Rec/dim variances: T/TT.
2 5, 6,

3 9, 10/

INTEGER*2 longitude(3) ! Datatype: INT2.

1 /10, 20,30/ ! Rec/dim variances: T/T.
REAL*4 temperature ! Datatype: FLOAT.

1 /1234.56/ I Rec/dim variances: T/.

CHARACTER*10 name(2)

1 I'ABCDEFGHIJ,
2 '12345678'/

! Datatype: CHAR/10.
! Rec/dim variances: T/T.

COMMON /BLK/delta, time, temperature, longitude, name

num_var =5
rec_num=4

I Number of zVariables
I Record number to write

status = CDF_LIB (GET_, zZVAR_NUMBER_, 'Delta’, var_nums(1),

1 NULL _, status)

IF (var_nums(1) .LT. 1)

1 zVariable number
1If less than one (1),

x CALL UserStatusHandler (var_nums(1)) ! then it is actually a

' warning/error code.

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Time', var_nums(2),

1 NULL _, status)

IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

status = CDF_LIB (GET_, zVAR_NUMBER _, 'Longitude', var_nums(3),

1 NULL_, status)

IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

137

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Temperature’, var_nums(4),
1 NULL_, status)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET_, zVAR_NUMBER_, 'NAME', var_nums(5),
1 NULL _, status)
IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var_nums(5))

CALL CDF_put_zvars_recorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, 1-byte. Unexpected results may return if
such ordering is not followed. This function can be a replacement for the similar functionality provided from the
Internal Interface as <PUT _, zZVARs_RECDATA >.

6.3.40 CDF_rename_zvar

SUBROUTINE CDF_rename_zvar (

INTEGER*4 id, !'in -- CDF identifier.
INTEGER*4 var_num, !'in -- zVariable number.
CHARACTER var_name*(*), Iin -- New name.
INTEGER*4 status) ! out -- Completion status

CDF_rename_zvar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_rename_zvar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable to rename. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

var_name The new zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
Variable names are case-sensitive.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.40.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDF_get_var_num returns a value less than one (1) then that value is not a zVariable number but rather a warning/error
code.

138

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status 1 Returned status code.
INTEGER*4 var_num I zVariable number.

var_num = CDF_get var_num (id, "TEMPERATURE")
IF (var_num _.LT. 1) THEN
IF (var_num _NE. NO_SUCH_VAR) CALL UserStatusHandler (var_num)
ELSE
CALL CDF_rename_zvar (id, var_num, "TMP", status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
END IF

6.3.41 CDF_set_zvar_allocblockrecs

SUBROUTINE CDF_set_zvar_allocblockrecs (

INTEGER*4 id, ! in-- CDF identifier.

INTEGER*4 var_num, ! in -- zZVariable number.

INTEGER*4 first_rec, ! in -- First record number to allocate.

INTEGER*4 last_rec, I in -- Last record number to allocate.

INTEGER*4 status) ! out -- Completion status

CDF_set_zvar_allocblockrecs specifies a range records to allocate for the specified zVariable in a CDF. This operation
is only applicable to uncompressed variables in single-file CDFs. Refer to the CDF User’s Guide for the description of
allocations of variable records.

The arguments to CDF_set_zvar_allocblockrecs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
first_ rec The first record number to allocate.
last_rec The last record number to allocate.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.41.1. Example(s)

139

The following example allocates 100 records, from record number 21 to 120, for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf. inc"

CDF identifier.

Starting record number to allocate.
Ending record number to allocate.
Returned status code.

INTEGER*4 id
INTEGER*4 first_rec
INTEGER*4 last_rec
INTEGER*4 status

first rec = 21

last _rec = 120

CALL CDF_set_zvar_allocblockrecs (id, CDF_get var_num(id, “MY_VAR?),
1 first_rec, last _rec, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.42 CDF_set_zvar_allocrecs

SUBROUTINE CDF _set_zvar_allocrecs (

INTEGER*4 id, ! in-- CDF identifier.

INTEGER*4 var_num, ! in -- zZVariable number.

INTEGER*4 num_recs, ! in -- Number of allocated records.

INTEGER*4 status) ! out -- Completion status

CDF_set_zvar_allocrecs specifies the number of records allocated for the specified zVariable in a CDF. The records
are allocated beginning at record number one (1). This operation is only applicable to uncompressed variables in single-
file CDFs. Refer to the CDF User’s Guide for the description of allocating variable records in a single-file CDF.

The arguments to CDF_set_zvar_allocrecs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
num_recs The number of records allocated for the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.42.1. Example(s)

The following example allocates 100 records (record number 1 to 100) for zVariable “MY_VAR” in a CDF.

140

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_recs I Number of allocated records.
INTEGER*4 status I Returned status code.

num_recs = 100

CALL CDF_set_zvar_allocrecs (id, CDF_get_var_num(id, “MY_VAR?),
1 num_recs, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.43 CDF _set_zvar_blockingfactor

SUBROUTINE CDF _set_zvar_blockingfactor (

in -- CDF identifier.

in -- zVariable number.

in -- Variable blocking factor.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 bf,

!
!
!
INTEGER*4 status) !

CDF_set_zvar_blockingfactor respecifies the blocking factor for the specified zVariable in a CDF. Refer to the CDF
User’s Guide for the description of a variabale’s blocking factor.

The arguments to CDF_set_zvar_blockingfactor are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
bf The blocking factor of the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.43.1. Example(s)

The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf.inc"

141

INTEGER*4 id ! CDF identifier.

INTEGER*4 bf I Blocking factor.

INTEGER*4 status I Returned status code.

bf = 100

CALL CDF_set_zvar_blockingfactor (id, CDF_get_var_num(id, “MY_VAR?),
1 bf, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.44 CDF_set_zvar_cachesize

SUBROUTINE CDF_set_zvar_cachesize (

in -- CDF identifier.

in -- zVariable number.

in -- Number of cache buffers.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 num_buffers,

!
!
!
INTEGER*4 status) !

CDF_set_zvar_cachesize specifies the number of cache buffers being for the specified zVariable in a CDF. This
operation is not applicable to a single-file CDF. Refer to the CDF User’s Guide for the description about caching

scheme used by the CDF library.

The arguments to CDF_set_zvar_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or

CDF_open_cdf.
var_num The zVariable number.
num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.44.1. Example(s)

The following example sets the number of cache buffers to 10 to be used for zVariable “MY_VAR” in a multi-file

CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 num_buffers! Number of cache buffers.

142

INTEGER*4 status I Returned status code.

num_buffers = 10

CALL CDF_set _zvar_cachesize (id, CDF _get_var_num(id, “MY_VAR?),

1

num_buffers, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.45 CDF_set_zvar_compression

SUBROUTINE CDF_set_zvar_compression (

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 compress_type, !
INTEGER*4 compress_parms, !
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.

in -- Compression type.

in -- Compression parameters.
out -- Completion status

CDF_set_zvar_compression respecifies the compression type/parameters of the specified zVariable in a CDF. Refer to
Section 4.10 for the description of the CDF supported compression types/parameters.

The arguments to CDF_set_zvar_compression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or

CDF_open_cdf.

var_num The zVariable number.

compress_type The compression type.

compress_parms The compression parameters.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.45.1. Example(s)

The following example uses GZIP.9 compression for zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id
INTEGER*4 ctype

I CDF identifier.
I Compression type.

INTEGER*4 cparms(CDF_MAX_DIMS) I Compression parameters.

143

INTEGER*4 status ! Returned status code.

ctype = GZIP_COMPRESSION

cparms(l) = 9

CALL CDF_set _zvar_compression (id, CDF_get var_num(id, “MY_VAR?),
1 ctype, cparms, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.46 CDF_set_zvar_dataspec

SUBROUTINE CDF _set_zvar_dataspec (

INTEGER*4 id, !'in -- CDF identifier.

INTEGER*4 var_num, !'in -- zVariable number.

INTEGER*4 data_type, I'in -- Data type.

INTEGER*4 status) ! out -- Completion status

CDF_set_zvar_dataspec is used to respecify the data specification (data type and number of elements) of the specified
zVariable in a CDF. A zVariable’s data specification may not be changed if the new data specification is not equivalent
to the old one and any values, including pad value, have been written. Data specifications are considered equivalent if
the data types are equivalent and the number of elements are the same. Refer to Section 4.5 for the description of the
CDF data types.

The arguments to CDF_set_zvar_dataspec are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zZVariable to which to set. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

data_type The data type of the variable data.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.46.1. Example(s)

The following example respecifies the data type of zVariable “Temperature” to CDF_UINT2, from its original
CDF_INT2, in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

144

INTEGER*4 status I Returned status code.
INTEGER*4 data_type I Data type.

data_type = CDF_UINT2

CALL CDF_set _zvar_dataspec (id, CDF_get var_num (id, "Temperature®),
1 data_type, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.47 CDF_set_zvar_dimvariances

SUBROUTINE CDF _set_zvar_dimvariances (

INTEGER*4 id, !'in -- CDF identifier.

INTEGER*4 var_num, I'in -- zVariable number.

INTEGER*4 dim_varys(*), I in -- Dimension variances.

INTEGER*4 status) ! out -- Completion status

CDF_set_zvar_dimvariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-
dimensional zVariable, this operation is not applicable. Refer to Section 4.9 for the description of the CDF variable’s
dimension variances.

The arguments to CDF_set_zvar_dimvariances are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zZVariable to which to set. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

dim_varys The dimension variances.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.47.1. Example(s)

The following example sets the dimension variances to VARY and VARY for zVariable “Temperature”, a 2-
dimensional variable, in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 dim_varys(CDF_MAX_DIMS) I Dimension variances.

145

dim_varys(1) VARY

dim_varys(2) = VARY

CALL CDF_set_zvar_dimvariances (id, CDF_get_var_num (id, “Temperature®),
1 dim_varys, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.48 CDF_set_zvar _initialrecs

SUBROUTINE CDF_set_zvar_initialrecs (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 num_recs,
INTEGER*4 status)

in -- CDF identifier.
in -- zVariable number.
in -- Number of written records.

!
|
!
! out-- Completion status

CDF_set_zvar_initialrecs specifies the number of records initially written for the specified zVariable in a CDF. The
records are written beginning at record number one (1). This may be specified only once per variable and before any
other records have been written to that variable. If a pad value has not yet been specified, the default value is used. If a
pad value has been explicitly specified, that value is written to the records. Refer to the CDF User’s Guide for the
description of initial variable records.

The arguments to CDF_set_zvar _initialrecs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
num_recs The number of records to be written for the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.48.1. Example(s)

The following example writes initially 100 records (record number 1 to 100) for zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_recs I Number of initially written records.
INTEGER*4 status I Returned status code.

num_recs = 100

146

CALL CDF_set zvar_initialrecs (id, CDF_get var_num(id, “MY_VAR?”),
1 num_recs, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.49 CDF_set_zvar_padvalue

SUBROUTINE CDF _set_zvar_padvalue (
INTEGER*4 id, 1'in -- CDF identifier.
INTEGER*4 var_num, I'in -- zVariable number.
1
!

<type> pad_value, i

in -- Pad value.
INTEGER*4 status) out -- Completion status

CDF_set_zvar_padvalue respecifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDF_set_zvar_padvalue are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zZVariable to which to set. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

pad_value The pad value.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.49.1. Example(s)

The following example sets the pad value to —999 for zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 pad_value I Pad value.

pad_value = -999

CALL CDF_set_zvar_padvalue (id, CDF_get var_num (id, "MY_VAR"),
1 pad_value, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

147

6.3.50 CDF_set_zvar_recvariance

SUBROUTINE CDF _set_zvar_recvariance (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_vary,
INTEGER*4 status)

in -- CDF identifier.
in -- zVariable number.
in -- Record variance.

!
!
!
! out -- Completion status

CDF_set_zvar_recvariance respecifies the record variance for the specified zVariable in a CDF. Refer to Section 4.9
for the description of the CDF variable’s record variance.

The arguments to CDF_set_zvar_recvariance are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable to which to set. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

rec_vary The record variance.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.50.1. Example(s)

The following example sets the record variance to VARY for zVariable “Temperature” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 rec_vary I Record variance.

rec_vary = VARY

CALL CDF_set _zvar_recvariance (id, CDF_get var_num (id, "Temperature-®),
1 rec_vary, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

148

6.3.51

CDF_set_zvar_reservepercent

SUBROUTINE CDF _set_zvar_reservepercent (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 res_percent,
INTEGER*4 status)

in -- CDF identifier.
in -- zVariable number.
in -- Reserve percentage.

|
|
!
! out -- Completion status

CDF_set_zvar_reservepercent respecifies the reserve percentage being used for the specified zVariable in a CDF. This
operation only applies to compressed zVariables. Refer to the CDF User’s Guide for the description of the reserve
scheme used by the CDF library.

The arguments to CDF_set_zvar_reservepercent are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

res_percent The reserve percentage.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.51.1. Example(s)

The following example sets the reserve percentage to 15 for the compressed zVariable “Temperature” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 res_percent I Reserve percentage.

res_percent = 15
CALL CDF_set_zvar_reservepercent (id, CDF_get var_num (id, "Temperature-®),

1

res_percent, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.52

CDF_set_zvars_cachesize

SUBROUTINE CDF_set_zvars_cachesize (

149

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 num_buffers, ! in-- zVariables’s number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_set_zvars_cachesize respecifies the number of cache buffers being used for all zVariables in a CDF. This
operation is not applicable to a single-file CDF. Refer to the CDF User’s Guide for the description about caching
scheme used by the CDF library.

The arguments to CDF_set_zvars_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.52.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 num_buffers! Number of cache buffers.
INTEGER*4 status I Returned status code.

ﬁum_buffers = 10
CALL CDF_set_zvars _cachesize (id, num_buffers, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.53 CDF_set_zvar_seqpos

SUBROUTINE CDF _set_zvar_seqpos (

INTEGER*4 id, in -- CDF identifier.
INTEGER*4 var_num, in -- zVariable number.

INTEGER*4 indices(*), in -- Indices in a record.

!
!
INTEGER*4 rec_num, I in -- Record number.
!
INTEGER*4 status) ! out -- Completion status

150

CDF_set_zvar_seqpos specifies the current sequential value (position) for sequential access for the specified zVariable
in a CDF. Note that a current sequential value is maintained for each zVariable individually. Use
CDF_get_zvar_seqdata subroutine to get the data value.

The arguments to CDF_set_zvar_seqpos are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The zVariable number.

rec_num The record number.

indices The dimension indices. Each element of indices receives the corresponding dimension

index. For O-dimensional zVariable, this argument is ignored, but must be presented.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.53.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for zVariable
“MY_VAR”, a 2-dimensional variable, in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 rec_num I Record number.
INTEGER*4 indices(2) I Dimension indices.

rec_num = 2

indices(1) = 0

indices(2) = 0

CALL CDF_set _zvar_seqpos (id, CDF_get var_num(id, “MY_VAR”), rec_num,
1 indices, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.54 CDF_set_zvar_sparserecords

SUBROUTINE CDF _set_zvar_sparserecords (

INTEGER*4 id, I'in -- CDF identifier.
INTEGER*4 var_num, I'in -- zVariable number.
INTEGER*4 srecords_type, 1in -- Sparse records type.

151

INTEGER*4 status) ! out -- Completion status

CDF_set_zvar_sparserecords respecifies the sparse records type for the specified zVariable in a CDF. Refer to Section
4.11 for the description of the sparse records.

The arguments to CDF_set_zvar_sparserecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num zVariable number.

srecords_type Sparse records type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.54.1. Example(s)

The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 srecords_type I Sparse records type.
INTEGER*4 num_dims I Dimension sizes.

srecords_type = PAD_SPARSERECORDS

CALL CDF_set_zvar_sparserecords (id, CDF_get var_num(id, “MY_VAR™),
1 srecords_type, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4 Attributes/Entries

This section prvides the functions related to attributes or entries in an attribute. An attribute is identified by its name or
an number in the CDF. To operate an attribute or entry, the CDF it resides in must be open.

6.4.1 CDF_confirm_attr_existence

INTEGER*4 FUNCTION CDF_confirm_attr_existence (

152

INTEGER*4 id, !in -- CDF identifier.
CHARACTER attr_name*(*)) 1in -- Attribute name.

CDF_ confirm_attr_existence confirms whether the specified name is an existing attribute in a CDF. It returns
CDF_OK if the attribute exists.

The arguments to CDF_ confirm_attr_existence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

attr_name Checks if an attribute with the given name exists in the CDF.

6.4.1.1. Example(s)

The following example checks whether the attribute by the name of “ATTR_NAMEL1"” is in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

status = CDF_confirm_attr_existence (id, “ATTR_NAME1”, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.2 CDF_confirm_gentry_existence

INTEGER*4 FUNCTION CDF_confirm_gentry_existence (

INTEGER*4 id, 1'in -- CDF identifier.
INTEGER*4 attr_num, 1in -- Global attribute identifier.
INTEGER*4 entry_num) 1in -- gEntry number.

CDF_ confirm_gentry_existence confirms the existence of the specified gEntry in an (global) attribute of a CDF. If the
gEntry does not exist, NO_SUCH_ENTRY will be returned.

The arguments to CDF_ confirm_gentry_existence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

attr_num The (global) attribute number.

153

entry_num The gEntry number.

6.4.2.1. Example(s)

The following example will check the existence of gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 attr_num I Attribute number.
INTEGER*4 status I Returned status code.

attr_num = CDF_get_attr_num(id, “MY_ATTR?)

IF (attr_num _LT. 1) CALL UserQuit(...)

status = CDF_confirm_gentry_existence (id, attr_num, 1)

IF (status .EQ. NO_SUCH_ENTRY) CALL UserStatusHandler (status)

6.4.3 CDF_confirm_rentry_existence

INTEGER*4 FUNCTION CDF_confirm_rentry_existence (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 attr_num, I in -- Variable attribute identifier.
INTEGER*4 entry_num) 1in -- rEntry number.

CDF_ confirm_rentry_existence confirms the existence of the specified rEntry, corresponding to an rVariable, in an
(variable) attribute of a CDF. If the rEntry does not exist, NO_SUCH_ENTRY will be returned.

The arguments to CDF_ confirm_rentry_existence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

attr_num The (variable) attribute number.

entry_num The rEntry number.

6.4.3.1. Example(s)

The following example will check the existence of the rEntry corresponding to rVariable “MY_VAR?” for attribute
“MY_ATTR” ina CDF.

154

INCLUDE "<path>cdf. inc"

CDF identifier.
Attribute number.
rEntry number.
Returned status code.

INTEGER*4 id
INTEGER*4 attr_num
INTEGER*4 entry_num
INTEGER*4 status

attr_num = CDF _get_attr_num(id, “MY_ATTR?)

IF (attr_num .LT. 1) CALL UserQuit(...)

entry_num = CDF_get _var_num(id, “MY_VAR?”)

IF (entry_num _LT. 1) CALL UserQuit(...)

status = CDF_confirm_rentry_existence (id, attr_num, entry_num, status)
IF (status .EQ. NO_SUCH_ENTRY) CALL UserStatusHandler (status)

6.4.4 CDF_confirm_zentry_existence

INTEGER*4 FUNCTION CDF_confirm_zentry_existence (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 attr_num, I in -- Variable attribute identifier.
INTEGER*4 entry_num) 1in -- zEntry number.

CDF_ confirm_zentry_existence confirms the existence of the specified zEntry, corresponding to a zVariable, in an
(variable) attribute of a CDF. If the zEntry does not exist, NO_SUCH_ENTRY will be returned.

The arguments to CDF_ confirm_zentry_existence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

attr_num The (variable) attribute number.

entry_num The zEntry number.

6.4.4.1. Example(s)

The following example will check the existence of the zEntry corresponding to zVariable “MY_VAR” for attribute
“MY_ATTR” ina CDF.

INCLUDE *<path>cdf. inc"

155

CDF identifier.
Attribute number.
zEntry number.
Returned status code.

INTEGER*4 id
INTEGER*4 attr_num
INTEGER*4 entry_num
INTEGER*4 status

attr_num = CDF_get_attr_num(id, “MY_ATTR?)

IF (attr_num _LT. 1) CALL UserQuit(...)

entry_num = CDF_get_var_num(id, “MY_VAR?”)

IF (entry_num .LT. 1) CALL UserQuit(...)

Status = CDF_confirm_zentry existence (id, attr_num, entry num, status)
IF (status _-EQ. NO_SUCH_ENTRY) CALL UserStatusHandler (status)

6.4.5 CDF_ create_attr

SUBROUTINE CDF _ create_attr (

in -- CDF identifier.
in -- Attribute name.
in -- Scope of attribute.
out -- Attribute number.
out -- Completion status

INTEGER*4 id,
CHARACTER attr_name*(*),
INTEGER*4 attr_scope,
INTEGER*4 attr_num,
INTEGER*4 status)

CDF_create_attr creates an attribute in the specified CDF. An attribute with the same name must not already exist in
the CDF.

The arguments to CDF_create_attr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

attr_name The name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN256
characters. Attribute names are case-sensitive.

attr_scope The scope of the new attribute. Specify one of the scopes described in Section 4.12.

attr_num The number assigned to the new attribute. This number must be used in subsequent CDF

subroutine calls when referring to this attribute. An existing attribute's number may be
determined with the CDF_get_attr_num function.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.5.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

156

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.

INTEGER*4 status I Returned status code.
CHARACTER UNITS attr_name*5 I Name of "Units" attribute.
INTEGER*4 UNITS_attr_num I "Units" attribute number.
INTEGER*4 TITLE attr_num I "TITLE" attribute number.
INTEGER*4 TITLE attr_scope I "TITLE" attribute scope.

DATA UNITS_attr_name/"Units"/, TITLE_attr_scope/GLOBAL_SCOPE/

CALL CDF _create_attr (id, "TITLE", TITLE attr_scope, TITLE attr_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_create_attr (id, UNITS attr_name, VARIABLE_SCOPE, UNITS_attr_num,

1 status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.6 CDF_delete_attr

SUBROUTINE CDF_delete_attr (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 status) ! out -- Completion status

CDF_delete_attr deletes the specified attribute from a CDF.
The arguments to CDF_delete_attr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number to be deleted.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.6.1. Example(s)

The following example will delete attribute “MY_ATTR” in a CDF.

INCLUDE *<path>cdf.inc"

157

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_delete_attr (id, CDF_get_attr_num(id, “MY_ATTR”), status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.7 CDF _delete_attr_gentry

SUBROUTINE CDF_delete_attr_gentry (

INTEGER*4 id, Lin
INTEGER*4 attr num, ! in
INTEGER*4 entry_num, ! in
INTEGER*4 status) ! out

CDF identifier.

Global attribute number.
gEntry number.
Completion status

CDF_delete_attr_gentry deletes the specified gEntry in an (global) attribute from a CDF
The arguments to CDF_delete_attr_gentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The global attribute number.
entry_num The gEntry number to be deleted.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.7.1. Example(s)

The following example will delete gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF _delete_attr_gentry (id, CDF _get attr_num(id, “MY_ATTR?), 2, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

158

6.4.8 CDF_delete_attr_rentry

SUBROUTINE CDF_delete_attr_rentry (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 attr num, ! in -- Variable attribute number.
INTEGER*4 entry _num, ! in -- rEntry number.
INTEGER*4 status) ! out-- Completion status

CDF_delete_attr_rentry deletes the specified rEntry, corresponding to an rVariable, in an (variable) attribute from a
CDF

The arguments to CDF_delete_attr_rentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The variable attribute number.
entry_num The rEntry number to be deleted.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.8.1. Example(s)

The following example will delete the entry for rVariable “MY_VAR” from the variable attribute “MY_ATTR” in a
CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 entry_num I rVariable number.
INTEGER*4 status 1 Returned status code.

entry_num = CDF_get_var_num(id, “MY_VAR?”)

IF (entry _num _LT. 1) CALL UserQuit(...)

CALL CDF_delete_attr_rentry (id, CDF_get_attr_num(id, “MY_ATTR?), entry_num,
1 status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

159

6.4.9 CDF_delete_attr_zentry

SUBROUTINE CDF_delete_attr_zentry (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 attr_num, ! in -- Variable attribute number.
INTEGER*4 entry_num, ! in -- zEntry number.
INTEGER*4 status) ! out -- Completion status

CDF_delete_attr_zentry deletes the specified rEntry, corresponding to a zVariable, in an (variable) attribute from a
CDF

The arguments to CDF_delete_attr_zentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The variable attribute number.
entry_num The zEntry number to be deleted.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.9.1. Example(s)

The following example will delete the entry for zVariable “MY_VAR” from the variable attribute “MY_ATTR” in a
CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 entry_num 1 zVariable number.
INTEGER*4 status I Returned status code.

entry_num = CDF_get var_num(id, “MY_VAR™)

IF (entry_num _LT. 1) CALL UserQuit(...)

CALL CDF_delete_attr_zentry (id, CDF_get_attr_num(id, “MY_ATTR?), entry_num,
1 status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

160

6.4.10

CDF_get_attr_gentry

SUBROUTINE CDF_get_attr_gentry (

INTEGER*4 id,

INTEGER*4 attr_num,
INTEGER*4 entry_num,

<type> value,
INTEGER*4 status)

!'in -- CDF identifier.

1in -- Global attribute number.

I'in -- Entry number.

I out -- Value (<type> is dependent on the data type of the enrty).
! out -- Completion status

CDF_get_attr_gentry is used to read a global attribute’s entry from a CDF. In most cases it will be necessary to call
CDF_inquire_attr_gentry before calling CDF_get_attr_gentry in order to determine the data type and number of
elements (of that data type) for the entry.

The arguments to CDF_get_attr_gentry are defined as follows:

id

attr_num

entry_num

value

status

6.4.10.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The global attribute number. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

The entry number. This is the gEntry number and has meaning only to the application.

The value read. This buffer must be large enough to hold the value. The subroutine
CDF _attr_entry_inquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example displays the value of the global attribute UNITS for the gEntry numbered 2 (but only if the data
type is CDF_CHAR).

INCLUDE *<path>cdf.inc"

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER

id I CDF identifier.

status I Returned status code.

attr_n 1 Attribute number.

data_type I Data type.

num_elems I Number of elements (of data type).

buffer*100 I Buffer to receive value (in this case it is
1

assumed that 100 characters is enough).

161

attr_n = CDF_get _attr_num (id, "UNITS")

IF (attr_n _.LT. 0) CALL UserStatusHandler (attr_n) ! If less than one (1),
I then it must be a
I warning/error code.

CALL CDF_inquire_attr_gentry (id, attr_n, 2, data_type, num_elems,
1 status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

IF (data_type .EQ. CDF_CHAR) THEN
CALL CDF _get attr_gentry (id, attr_n, 2, buffer, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer(1:num_elems)
10 FORMAT (" ",A)
END IF

6.4.11 CDF_get_attr_gentry _datatype

SUBROUTINE CDF_get_attr_gentry datatype (

INTEGER*4 id, lin
INTEGER*4 attr num, ! in
INTEGER*4 entry _num, ! in -- Entry number.
INTEGER*4 data_type, ! out-- Data type of the entry.
INTEGER*4 status) ! out-- Completion status

- CDF identifier.
- Attribute number.

CDF_get_attr_gentry_datatype acquires the data type of the specified gEntry from an (global) attribute in a CDF
The arguments to CDF_get_attr_gentry_datatype are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entry_num The gEntry number.
data_type The data type of the entry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.11.1. Example(s)

The following example acquires the data type for gEntry numbered 5 in the global attribute “MY_ATTR” in a CDF.

162

INCLUDE “<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 data_type I Data type.
INTEGER*4 status ! Returned status code.

CALL CDF _get_attr_gentry datatype (id, CDF_get_attr_num(id, “MY_ATTR”), 5,
1 data_type, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.12 CDF_get_attr_gentry_numelems

SUBROUTINE CDF_get_attr_gentry_numelems (

INTEGER*4 id, !'in -- CDF identifier.

INTEGER*4 attr_ num, ! in -- Attribute number.

INTEGER*4 entry_num, ! in -- Entry number.

INTEGER*4 num_elems,! out -- Number of elements of the entry.
INTEGER*4 status) I out -- Completion status

CDF_get_attr_gentry_numelems acquires the number of elements of the specified gEntry from an (global) attribute in a

CDF

The arguments to CDF_get_attr_gentry_numelems are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or

CDF_open_cdf.
attr num The attribute number.
entry_num The gEntry number.
num_elems The number of elements of the gEntry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.12.1. Example(s)

The following example acquires the number of elements for gEntry numbered 5 in the global attribute “MY_ATTR” in

a CDF.

iNCLUDE "<path>cdf.inc"

163

INTEGER*4 1id I CDF identifier.
INTEGER*4 num_elements I Number of elements.
INTEGER*4 status I Returned status code.

CALL CDF_get_attr_gentry numelems (id, CDF_get_attr_num(id, “MY_ATTR”), 5,
1 num_elems, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.13 CDF_get_attr_max_gentry

SUBROUTINE CDF_get_attr_max_gentry (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 entry_num, ! out-- Entry number.

INTEGER*4 status) ! out-- Completion status

CDF_get_attr_max_gentry acquires the last gEntry number from an (global) attribute in a CDF.

The arguments to CDF_get_attr_max_gentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entry_num The last gEntry number.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.13.1. Example(s)

The following example acquires the last gEntry number from the global attribute “MY_ATTR” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 entry_num I The last gEntry number.
INTEGER*4 status ! Returned status code.

164

CALL CDF_get_attr_max _gentry (id, CDF _get attr_num(id, “MY_ATTR?),
1 entry_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.14 CDF_get_attr_max_rentry

SUBROUTINE CDF_get attr_max_rentry (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 entry_num, ! out-- Entry number.

INTEGER*4 status) ! out -- Completion status

CDF_get_attr_max_rentry acquires the last rEntry number from an (variable) attribute in a CDF.

The arguments to CDF_get_attr_max_rentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr_ num The attribute number.
entry_num The last rEntry number

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.14.1. Example(s)

The following example acquires the last rEntry number from the variable attribute “MY_ATTR” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 entry_num I The last rEntry number.
INTEGER*4 status I Returned status code.

CALL CDF _get _attr_max _gentry (id, CDF _get attr_num(id, “MY_ATTR?),
1 entry_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

165

6.4.15 CDF_get_attr_max_zentry

SUBROUTINE CDF_get_attr_max_zentry (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.

INTEGER*4 entry_num, ! out-- Entry number.

INTEGER*4 status) ! out -- Completion status

CDF_get_attr_max_zentry acquires the last zEntry number from an (variable) attribute in a CDF.

The arguments to CDF_get_attr_max_zentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entry_num The last zEntry number.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.15.1. Example(s)

The following example acquires the last zEntry number from the variable attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 entry_num I The last zEntry number.
INTEGER*4 status I Returned status code.

CALL CDF_get_attr_max_gentry (id, CDF_get_attr_num(id, “MY_ATTR”),
1 entry_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.16 CDF_get_attr_name

SUBROUTINE CDF_get_attr_name (

166

in -- CDF identifier.
in -- Attribute number.
out -- Attribute name.
out -- Completion status

INTEGER*4 id,
INTEGER*4 attr_num,
CHARACTER attr_name*(*),
INTEGER*4 status)

!
!
!
!
CDF_get_attr_name acquires the name of the specified attribute (by its number) in a CDF.
The arguments to CDF_get_attr_name are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
attr name The attribute name.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.16.1. Example(s)

The following example acquires the name of the attribute number 2 in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
CHARACTER attr_name*(CDF_ATTR_NAME LEN256) ! The last rEntry number.
INTEGER*4 status I Returned status code.

CALL CDF _get attr_name (id, 2, attr_name, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.17 CDF_get_attr_num

INTEGER*4 FUNCTION CDF_get_attr_num (

INTEGER*4 id, !'in -- CDF identifier.
CHARACTER attr_name*(*), 1in -- Attribute name.
INTEGER*4 status) ! out -- Completion status

CDF_get_attr_num is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDF_get_attr_num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g.,
the attribute name does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less
than zero (0).

167

The arguments to CDF_get_attr_num are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

attr_name The name of the attribute for which to search. This may be at most
CDF_ATTR_NAME_LEN256 characters. Attribute names are case-sensitive.

CDF_attr_num may be used as an embedded function call when an attribute number is needed. CDF attr num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

6.4.17.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDF_attr_num being used
as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDF_get_attr_num
would have returned an error code. Passing that error code to CDF_rename_attr as an attribute number would have
resulted in CDF_rename_attr also returning an error code. CDF_rename_attr is described in Section 6.4.38.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_rename_attr (id, CDF _get attr_num(id, "pressure®), "PRESSURE",
1 status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.18 CDF_get_attr_num_gentries

SUBROUTINE CDF_get_attr_num_gentries (

INTEGER*4 id, 1in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.

INTEGER*4 entries, ! out -- Total entries.

INTEGER*4 status) ! out -- Completion status

CDF_get_attr_num_gentries acquires the total number of entries (gEntries) in the specified (global) attribute of a CDF.

The arguments to CDF_get_attr_num_gentries are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

168

attr_ num The attribute number.
entries Total gEntries.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.18.1. Example(s)

The following example acquires the total number of entries (gEntries) in the global attribute “MY_ATTR” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 entries 1 Total entries.
INTEGER*4 status ! Returned status code.

CALL CDF _get_attr_num gentries (id, CDF _get attr_num(id, “MY_ATTR?),
1 entries, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.19 CDF_get_attr_num_rentries
SUBROUTINE CDF_get_attr_num_rentries (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entries,
INTEGER*4 status)

in -- CDF identifier.
in -- Attribute number.
out -- Total entries.

!
!
!
! out-- Completion status

CDF_get_attr_num_rentries acquires the total number of entries for the rVariables (rEntries) in the specified (variable)
attribute of a CDF.

The arguments to CDF_get_attr_num_rentries are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entries Total rEntries.

status The completion status code. Chapter 8 explains how to interpret status codes.

169

6.4.19.1. Example(s)

The following example acquires the total number of entries (rEntries) in the variable attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 entries I Total entries.
INTEGER*4 status ! Returned status code.

CALL CDF _get_attr_num_rentries (id, CDF_get attr_num(id, “MY_ATTR?),
1 entries, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.20 CDF_get_attr_num_zentries

SUBROUTINE CDF_get_attr_num_zentries (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entries,
INTEGER*4 status)

in -- CDF identifier.
in -- Attribute number.
out -- Total entries.

!
!
!
! out -- Completion status

CDF_get_attr_num_zentries acquires the total number of entries for the zvariables (zEntries) in the specified (variable)
attribute of a CDF.

The arguments to CDF_get_attr_num_zentries are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entries Total zEntries.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.20.1. Example(s)

The following example acquires the total number of entries (zEntries) in the variable attribute “MY_ATTR” in a CDF.

170

INCLUDE *<path>cdf.inc"

INTEGER*4 id
INTEGER*4 entries
INTEGER*4 status

1 CDF identifier.
1 Total entries.
I Returned status code.

CALL CDF _get _attr_num zentries (id, CDF _get attr_num(id, “MY_ATTR?),

1

entries, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.21 CDF_get_attr_rentry

SUBROUTINE CDF_get_attr_rentry (

INTEGER*4 id, !
INTEGER*4 attr_num, !
INTEGER*4 entry_num, !
<type> value, !
INTEGER*4 status) !

in -- CDF identifier.

in -- Variable attribute number.

in -- Entry number.

out -- Value (<type> is dependent on the data type of the enrty).
out -- Completion status

CDF_get_attr_rentry is used to read a variable attribute’s entry corresponding to an rVariable (rEntry) from a CDF. In
most cases it will be necessary to call CDF_inquire_attr_rentry before calling CDF_get_attr_rentry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDF_get_attr_rentry are defined as follows:

id

attr_num

entry_num

value

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The variable attribute number. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

The entry number. This is the number of the associated rVariable (the rVariable being
described in some way by the rEntry).

The value read. This buffer must be large enough to hold the value. The subroutine
CDF _attr_entry_inquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

171

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.21.1. Example(s)

The following example displays the value of the variable attribute UNITS for the rEntry corresponding to the
PRES_LVL rVariable (but only if the data type is CDF_CHAR).

INCLUDE *<path>cdf.inc"

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).

Buffer to receive value (in this case it is
assumed that 100 characters is enough).

INTEGER*4 1id
INTEGER*4 status
INTEGER*4 attr_n
INTEGER*4 entryN
INTEGER*4 data_type
INTEGER*4 num_elems
CHARACTER buffer*100

attr_n = CDF_get_attr_num (id, “UNITS®)

IF (attr_n .LT. 0) CALL UserStatusHandler (attr_n) ! If less than one (1),
I then it must be a
I warning/Zerror code.

entryN = CDF_get _var_num (id, "PRES LVL") I The rEntry number is
I the rVvVariable number.

IF (entryN .LT. 0) CALL UserStatusHandler (entryN) ! If less than one (1),
I then it must be a
I warning/error code.

CALL CDF_inquire_attr_rentry (id, attr_n, entryN, data_type, num_elems,
1 status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

IF (data_type .EQ. CDF_CHAR) THEN
CALL CDF _get_attr_rentry (id, attr_n, entryN, buffer, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer(l:num_elems)
10 FORMAT (* *,A)
END IF

6.4.22 CDF_get_attr_rentry_datatype

SUBROUTINE CDF_get_attr_rentry_datatype (

172

INTEGER*4 id, !
INTEGER*4 attr_num, !
INTEGER*4 entry_num, !
INTEGER*4 data_type, !
INTEGER*4 status) !

in --
in --
in --
out --
out --

CDF identifier.
Attribute number.
Entry number.

Data type of the entry.
Completion status

CDF_get_attr_rentry_datatype acquires the data type of the specified rEntry, corresponding to an rVariable, from an

(variable) attribute in a CDF.

The arguments to CDF_get_attr_rentry_datatype are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.

entry_num The rEntry number.

data_type The data type of the entry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.22.1. Example(s)

The following example acquires the data type for rEntry, corresponding to rVariable “MY_VAR” in the variable
attribute “MY_ATTR” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id

INTEGER*4 data_type

INTEGER*4 status

1 CDF identifier.
I Data type.
1 Returned status code.

C-?ALL CDF_get_attr_rentry_datatype (id, CDF_get attr_num(id, “MY_ATTR”),

1
2

CDF_get_var_num(id, “MY_VAR™), data_type,
status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.23 CDF_get_attr_rentry_numelems

SUBROUTINE CDF_get attr_rentry_numelems (

INTEGER*4 id, 1in -- CDF identifier.

173

INTEGER*4 attr num, ! in -- Attribute number.

INTEGER*4 entry_num, ! in -- Entry number.

INTEGER*4 num_elems,! out -- Number of elements of the entry.
INTEGER*4 status) ! out -- Completion status

CDF_get_attr_rentry_numelems acquires the number of elements of the specified rEntry, corresponding to an
rVVariable, from an (variable) attribute in a CDF.

The arguments to CDF_get_attr_rentry_numelems are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entry_num The rEntry number.
num_elems The number of elements of the rEntry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.23.1. Example(s)

The following example acquires the number of elements for rEntry, corresponding to rVariable “MY_VAR?”, in the
variable attribute “MY_ATTR” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 num_elements I Number of elements.
INTEGER*4 status I Returned status code.

CALL CDF_get_attr_rentry_numelems (id, CDF _get attr_num(id, “MY_ATTR?),
1 CDF_get_var_num(id, “MY_VAR™), num _elems,
2 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.24 CDF_get_attr_scope

SUBROUTINE CDF_get _attr_scope (

INTEGER*4 id, I'in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.

174

INTEGER*4 scope, ! out -- Attribute scope.
INTEGER*4 status) ! out -- Completion status

CDF_get_attr_scope acquires the scope, either GLOBAL_SCOPE or VARIABLE_SCOPE, of the specified attribute in
a CDF.

The arguments to CDF_get_attr_scope are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
scope The attribute scope.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.24.1. Example(s)

The following example acquires the scope for the attribute “MY_ATTR” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 scope 1 Attribute scope.
INTEGER*4 status I Returned status code.

CALL CDF _get attr_scope (id, CDF_get attr_num(id, “MY_ATTR”), scope,
1 status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.25 CDF_get_attr_zentry

SUBROUTINE CDF_get_attr_zentry (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 attr_num, I'in -- variable attribute number.

INTEGER*4 entry_num, I'in -- Entry number.

<type> value, I out -- Value (<type> is dependent on the data type of the enrty).
]

INTEGER*4 status) out -- Completion status

175

CDF_get_attr_zentry is used to read a variable attribute’s entry, corresponding to a zVariable, (zEntry) in a CDF. In
most cases it will be necessary to call CDF_inquire_attr_zentry before calling CDF_get_attr_zentry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDF_get_attr_zentry are defined as follows:

id

attr_num

entry_num

value

status

6.4.25.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The variable attribute number. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

The entry number. This is the number of the associated zVariable (the zVariable being
described in some way by the zEntry).

The value read. This buffer must be large enough to hold the value. The subroutine
CDF_inquire_attr_zentry would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example displays the value of the UNITS attribute for the zEntry corresponding to the PRES LVL
zVariable (but only if the data type is CDF_CHAR).

INCLUDE "<path>cdf.inc*

INTEGER*4 id

INTEGER*4 status
INTEGER*4 attr_n
INTEGER*4 entryN
INTEGER*4 data_type
INTEGER*4 num_elems
CHARACTER buffer*100

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).

Buffer to receive value (Iin this case it is
assumed that 100 characters is enough).

attr_n = CDF_get_attr_num (id, "UNITS®)
IF (attr_n _LT. 0) CALL UserStatusHandler (attr_n) ! If less than one (1),

I then it must be a
I warning/error code.

entryN = CDF_get var_num (id, "PRES LVL") I The zEntry number is

1 the zVariable number.

176

IF (entryN .LT. 0) CALL UserStatusHandler (entryN) ! If less than one (1),
I then it must be a
I warning/error code.

CALL CDF_inquire_attr_zentry (id, attr_n, entryN, data_type, num_elems,
1 status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

IF (data_type .EQ. CDF_CHAR) THEN
CALL CDF_get_attr_zentry (id, attr_n, entryN, buffer, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer(1:num_elems)

10 FORMAT (" *,A)
END IF

6.4.26 CDF_get_attr_zentry datatype

SUBROUTINE CDF_get _attr_zentry datatype (
INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 entry_num, ! in -- Entry number.
INTEGER*4 data_type, ! out-- Data type of the entry.
INTEGER*4 status) ! out -- Completion status

CDF_get_attr_zentry datatype acquires the data type of the specified zEntry, corresponding to a zVariable, from an
(variable) attribute in a CDF.

The arguments to CDF_get_attr_zentry datatype are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr_ num The attribute number.
entry_num The zEntry number.
data_type The data type of the entry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.26.1. Example(s)

The following example acquires the data type for zEntry, corresponding to zVariable “MY_VAR?” in the variable
attribute “MY_ATTR” in a CDF.

177

INCLUDE “<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 data_type I Data type.
INTEGER*4 status ! Returned status code.

CALL CDF_get_attr_zentry datatype (id, CDF_get attr_num(id, “MY_ATTR”),

1 CDF_get _var_num(id, “MY_VAR?), data_type,
2 Status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.27 CDF_get_attr_zentry numelems

SUBROUTINE CDF _get attr_rentry_numelems (

INTEGER*4 id, lin
INTEGER*4 attr num, ! in
INTEGER*4 entry_num, ! in -- Entry number.

INTEGER*4 num_elems,! out -- Number of elements of the entry.
INTEGER*4 status) ! out -- Completion status

- CDF identifier.
- Attribute number.

CDF_get_attr_zentry_numelems acquires the number of elements of the specified zEntry, corresponding to a
zVariable, from an (variable) attribute in a CDF.

The arguments to CDF_get_attr_zentry _numelems are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entry_num The zEntry number.
num_elems The number of elements of the zEntry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.27.1. Example(s)

The following example acquires the number of elements for zEntry corresponding to zVariable “MY_VAR” in the
variable attribute “MY_ATTR” in a CDF.

iNCLUDE "<path>cdf.inc"

178

INTEGER*4 id 1 CDF identifier.
INTEGER*4 num_elements I Number of elements.
INTEGER*4 status I Returned status code.

CALL CDF_get_attr_zentry numelems (id, CDF_get_attr_num(id, “MY_ATTR”),
1 CDF_get_var_num(id, “MY_VAR?), num_elems,
2 status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.28 CDF_get_num_attrs

SUBROUTINE CDF_get_num_attrs (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 num_attrs, I out -- Number of attributes.
INTEGER*4 status) ! out -- Completion status

CDF_get_num_attrs acquires the total number of (global and variable) attributes in a CDF.
The arguments to CDF_get_num_attrs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_attrs The number of attributes.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.28.1. Example(s)

The following example acquires the total number of attributes in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 attrs 1 Attributes.
INTEGER*4 status I Returned status code.

CALL CDF_get _num_attrs (id, attrs, status)

179

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.29 CDF_get_num_gattrs

SUBROUTINE CDF_get_num_gattrs (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attrs, I out -- Number of attributes.
INTEGER*4 status) ! out -- Completion status

CDF_get_num_gattrs acquires the total number of global attributes in a CDF.

The arguments to CDF_get_num_gattrs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attrs The number of global attributes.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.29.1. Example(s)

The following example acquires the total number of global attributes in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 attrs 1 Attributes.
INTEGER*4 status I Returned status code.

CALL CDF _get num gattrs (id, attrs, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.30 CDF_get_ num_vattrs

SUBROUTINE CDF_get _num_vattrs (

180

INTEGER*4 id, Iin -- CDF identifier.
INTEGER*4 attrs, I out -- Number of attributes.
INTEGER*4 status) ! out -- Completion status

CDF_get_num_vattrs acquires the total number of variable attributes in a CDF.

The arguments to CDF_get_num_vattrs are defined as follows:

id

attrs

status

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

The number of variable attributes.

The completion status code. Chapter 8 explains how to interpret status codes.

6.4.30.1. Example(s)

The following example acquires the total number of variable attributes in a CDF.

INCLUDE

"<path>cdf.inc"
INTEGER*4 id 1 CDF identifier.
INTEGER*4 attrs 1 Attributes.
INTEGER*4 status 1 Returned status code.

CALL CDF_get _num_vattrs (id, attrs, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.31

CDF _inquire_attr

SUBROUTINE CDF _inquire_attr (

INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id, !'in -- CDF identifier.

attr_num, 1 in -- Attribute number.
attr_name*(CDF_ATTR_NAME_LEN256), ! out -- Attribute name.

attr_scope, ! out -- Attribute scope.

max_gentry, ! out -- Maximum gEntry number if global attribute.
max_rentry, ! out -- Maximum rEntry number if variable attribute.
max_zentry, ! out -- Maximum zEntry number if variable attribute.
status) ! out -- Completion status

181

CDF_inquire_attr is used to inquire about the specified attribute. This subroutine expands the original Standard
Interface subroutine CDF_attr_inquire (Section 5.4) by including an extra information about zEntry if variable attribute
inquire about a specific attribute entry, use CDF_inquire_attr_gentry (Section 6.4.32),
CDF_inquire_attr_rentry (Section 6.4.33) or CDF_inquire_attr_zentry (Section 6.4.34).

is involved. To

The arguments to CDF_inquire_attr are defined as follows:

id

attr_num

attr_name

attr_scope

max_gentry

max_rentry

max_zentry

status

6.4.31.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

The number of the attribute to inquire. This number may be determined with a call to
CDF _get_attr_num (see Section 6.4.17).

The attribute’s name. This character string must be large enough to hold
CDF_ATTR_NAME_LENZ256 characters and will be blank padded if necessary.

The scope of the attribute. Attribute scopes are defined in Section 4.12.

For gAttributes this is the maximum gEntry number used. This may not correspond with
the number of entries (if some entry numbers were not used). The number of entries
actually used may be inquired with CDF_get_attr_num_gentries (see Section 6.4.18). If no
entries exist for the attribute, then a value of zero (0) will be passed back.

For vAttributes this is the maximum rEntry number used. This may not correspond with the
number of entries (if some entry numbers were not used). The number of entries actually
used may be inquired with CDF_get_attr_num_rentries (see Section 6.4.19). If no entries
exist for the attribute, then a value of zero (0) will be passed back.

For vAttributes, this is the maximum zEntry number used. This may not correspond with
the number of entries (if some entry numbers were not used). The number of entries
actually used may be inquired with the CDF_get_attr_num_zentries subroutine (see Section
6.4.20). If no entries exist for the attribute, such as for gAttributes, then a value of zero (0)
will be passed back.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the subroutine CDF_inquire. Only variable attributes may return non-zero maximum zEntry number.
Note that attribute numbers start at one (1) and are consecutive.

INCLUDE "<path>cdf.inc"

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4

dim_sizes(CDF_MAX DIMS)

encoding
majority

id CDF identifier.
status Returned status code.
num_dims Number of dimensions.

Dimension sizes (allocate to
allow the maximum number of
dimensions).

Data encoding.

Variable majority.

182

Maximum record number in CDF.
Number of variables in CDF.
Number of attributes in CDF.
Attribute number.

Attribute name.

Attribute scope.

Maximum gEntry number.
Maximum rEntry number.
Maximum zEntry number.

INTEGER*4 max_rec

INTEGER*4 num_vars

INTEGER*4 num_attrs

INTEGER*4 attr_n

CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)
INTEGER*4 attr_scope

INTEGER*4 max_gentry

INTEGER*4 max_rentry

INTEGER*4 max_zentry

CALL CDF_inquire (id, num_dims, dim_sizes, encoding, majority,
1 max_rec, num_vars, num_attrs, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
DO attr_n = 1, num_attrs
CALL CDF_inquire_attr (id, attr_n, attr_name, attr_scope, max_gentry,

1 max_rentry, max_zentry, status)

IF (status .LT. CDF_OK) THEN I INFO status codes ignored.
CALL UserStatusHandler (status)

ELSE
WRITE (6,10) attr_name

10 FORMAT (* ",A)
END IF
END DO

6.4.32 CDF_inquire_attr_gentry

SUBROUTINE CDF _inquire_attr_gentry (

in -- CDF identifier.

in -- Global attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).
out -- Completion status

INTEGER*4 id, !
INTEGER*4 attr_num, !
INTEGER*4 entry_num, !
INTEGER*4 data_type, !
INTEGER*4 num_elements, !
INTEGER*4 status) !
CDF_inquire_attr_gentry is used to inquire about a specific global attribute’s entry. To inquire about the attribute in
general, use CDF_inquire_attr (see Section 6.4.31). CDF_inquire_attr_gentry would normally be called before calling
CDF_get_attr_gentry in order to determine the data type and number of elements (of that data type) for an entry. This
would be necessary to correctly allocate enough memory to receive the value read by CDF_attr_get.

The arguments to CDF_attr_entry_inquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

attr_num The global attribute number for which to inquire an entry. This number may be
determined with a call to CDF_get_attr_num (see Section 6.4.17).

entry_num The entry number to inquire. This is simply the gEntry number and has meaning only to
the application.

183

data_type The data type of the specified entry. The data types are defined in Section 4.5.

num_elements The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.32.1. Example(s)

The following example inquires each entry for a global attribute. Note that entry numbers need not be consecutive -
not every entry number between one (1) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code

INCLUDE "<path>cdf. inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 attr_n

INTEGER*4 entryN

CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)
INTEGER*4 attr_scope

INTEGER*4 max_gentry

INTEGER*4 max_rentry

INTEGER*4 max_zentry

CDF identifier.

Returned status code.
Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum gEntry number used.
Maximum rEntry number used.
Maximum zEntry number used.

INTEGER*4 data_type Data type.
INTEGER*4 num_elems Number of elements (of the
data type).

attr_n = CDF_get_attr_num (id, "TMP®)
IF (attr_n .LT. 1) CALL UserStatusHandler (attr_n) ! If less than one (1),
I then it must be a
I warning/error code.
CALL CDF_inquire_attr (id, attr_n, attr_name, attr_scope, max_gentry,
1 max_rentry, max_zentry, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
DO entryN = 1, max_gentry
CALL CDF_inquire_attr_gentry (id, attr_n, entryN, data_type, num_elems,
1 status)
IF (status .LT. CDF_OK) THEN
IF (status _NE. NO_SUCH_ENTRY) CALL UserStatusHandler (status)
ELSE
C (process entries)

END IF
END DO

184

6.4.33

CDF_inquire_attr_rentry

SUBROUTINE CDF _inquire_attr_rentry (

INTEGER*4 id,

INTEGER*4 attr_num,
INTEGER*4 entry_num,
INTEGER*4 data_type,

INTEGER*4 num_elements,

INTEGER*4 status)

in -- CDF identifier.

in -- Variable attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).

|
|
|
!
!
! out -- Completion status

CDF_inquire_attr_rentry is used to inquire about a specific entry, corresponding to an rVariable, in a variable attribute,
(rEntry). To inquire about the attribute in general, use CDF_inquire_attr (see Section 6.4.31). CDF _inquire_attr_rentry
would normally be called before calling CDF _get attr_rentry in order to determine the data type and number of
elements (of that data type) for an entry. This would be necessary to correctly allocate enough memory to receive the
value read by CDF_get_attr_zentry.

The arguments to CDF_inquire_attr_rentry are defined as follows:

id

attr_num

entry_num

data_type

num_elements

status

6.4.33.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The attribute number for which to inquire an entry. This number may be determined
with a call to CDF_get_attr_num (see Section 6.4.17).

The entry number to inquire. The attribute must be variable in scope. This is the number
of the associated rVariable (the rVariable being described in some way by the zEntry).

The data type of the specified entry. The data types are defined in Section 4.5.
The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).

For all other data types this is the number of elements in an array of that data type.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example inquires each rEntry for variable attribute “TMP” in a CDF. Note that entry numbers need not
be consecutive - not every entry number between one (1) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code.

INCLUDE *<path>cdf.inc"

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4

id

status
attr_n
entryN

attr_name*(CDF_ATTR_NAME_LEN256)
attr_scope
max_gentry

CDF identifier.

Returned status code.
Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum gEntry number used.

185

INTEGER*4 max_rentry
INTEGER*4 max_zentry

Maximum rEntry number used.
Maximum zEntry number used.

INTEGER*4 data_type Data type.
INTEGER*4 num_elems Number of elements (of the
data type).

attr_n = CDF_get_attr_num (id, "TMP®)
IF (attr_n .LT. 1) CALL UserStatusHandler (attr_n) ! If less than one (1),
I then it must be a
I warning/Zerror code.
CALL CDF_inquire_attr (id, attr_n, attr_name, attr_scope, max_gentry,
1 max_rentry, max_zentry, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
DO entryN = 1, max_rentry
CALL CDF_inquire_attr_rentry (id, attr_n, entryN, data_type, num_elems,
1 status)
IF (status .LT. CDF_OK) THEN
IF (status _NE. NO_SUCH_ENTRY) CALL UserStatusHandler (status)
ELSE
C (process entries)

END IF
END DO

6.4.34 CDF_inquire_attr_zentry

SUBROUTINE CDF _inquire_attr_zentry (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entry_num,
INTEGER*4 data_type,
INTEGER*4 num_elements,
INTEGER*4 status)

1'in -- CDF identifier.

!'in -- Variable attribute number.

1in -- Entry number.

! out -- Data type.

! out -- Number of elements (of the data type).

! out -- Completion status

CDF_inquire_attr_zentry is used to inquire about a specific entry, corresponding to a zVariable, in a variable attribute,
(zEntry). To inquire about the attribute in general, use CDF_inquire attr (see Section 6.4.31).
CDF_inquire_attr_zentry would normally be called before calling CDF_get_attr_zentry in order to determine the data
type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDF_get_attr_zentry.

The arguments to CDF_inquire_attr_zentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

attr_num The attribute number for which to inquire an entry. This number may be determined
with a call to CDF_get_attr_num (see Section 6.4.17).

entry_num The entry number to inquire. The attribute must be variable in scope. This is the number
of the associated zVariable (the zVariable being described in some way by the zEntry).

186

data_type The data type of the specified entry. The data types are defined in Section .

num_elements The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.34.1. Example(s)

The following example inquires each zEntry for variable attribute “TMP” in a CDF. Note that entry numbers need not
be consecutive - not every entry number between one (1) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code

INCLUDE "<path>cdf. inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 attr_n

INTEGER*4 entryN

CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)
INTEGER*4 attr_scope

INTEGER*4 max_gentry

INTEGER*4 max_rentry

INTEGER*4 max_zentry

CDF identifier.

Returned status code.
Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum gEntry number used.
Maximum rEntry number used.
Maximum zEntry number used.

INTEGER*4 data_type Data type.
INTEGER*4 num_elems Number of elements (of the
data type).

attr_n = CDF_get_attr_num (id, "TMP®)
IF (attr_n .LT. 1) CALL UserStatusHandler (attr_n) ! If less than one (1),
I then it must be a
I warning/error code.
CALL CDF_inquire_attr (id, attr_n, attr_name, attr_scope, max_gentry,
1 max_rentry, max_zentry, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
DO entryN = 1, max_zentry
CALL CDF_inquire_attr_zentry (id, attr_n, entryN, data_type, num_elems,
1 status)
IF (status .LT. CDF_OK) THEN
IF (status _NE. NO_SUCH_ENTRY) CALL UserStatusHandler (status)
ELSE
C (process entries)

END IF
END DO

187

6.4.35 CDF_put_attr_gentry

SUBROUTINE CDF_put_attr_gentry (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entry_num,

INTEGER*4 num_elements,
<type> value,
INTEGER*4 status)

!

!

!
INTEGER*4 data_type, Vi

!

]

1

in -- CDF identifier.

in -- Global attribute number.

in -- Entry number.

in -- Data type of this entry.

in -- Number of elements (of the data type).

in -- Value (<type> is dependent on the data type of the enrty).
out -- Completion status

CDF_put_attr_gentry is used to write an gentry to a variable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when

overwriting an existing entry.

The arguments to CDF_put_attr_gentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

attr_num The global attribute number. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

entry_num The entry number. The attribute must be global in scope.

data_type

num_elements

value

status

6.4.35.1.

The data type of the specified entry. Specify one of the data types defined in Section
4.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example writes one global attribute’s gEntry. It is to the global scope attribute VALIDs for gEntry
numbered 2. This entry is of CDF_INT2 type.

INCLUDE *<path>cdf.inc"

188

INTEGER*4 id
INTEGER*4 status

1 CDF identifier.
! Returned status code.

INTEGER*4 num_elements I Number of elements (of data type).

INTEGER*2 TMPvalid

DATA TMPvalids/15/

num_elements = 1

1 Value of VALIDs attribute.

CALL CDF _put_attr_gentry (id, CDF_get attr_num(id, "VALIDs"), 2,

1

CDF_INT2, num_elements, TMPvalid, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.36 CDF_put_attr_rentry

SUBROUTINE CDF_put_attr_rentry (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entry_num,
INTEGER*4 data_type,
INTEGER*4 num_elements,
<type> value,
INTEGER*4 status)

in -- Value (<type> is dependent on the data type of the enrty).
out -- Completion status

1'in -- CDF identifier.

I'in -- Variable attribute number.

1'in -- Entry number.

I in -- Data type of this entry.

1 in -- Number of elements (of the data type).
|

|

CDF_put_attr_rentry is used to write an entry, corresponding to an rVariable, (rEntry) to a variable attribute in a CDF.
The entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of
that data type) may be changed when overwriting an existing entry.

The arguments to CDF_put_attr_rentry are defined as follows:

id

attr_num

entry_num

data_type

num_elements

value

The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

The attribute number. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

The entry number. The attribute must be variable in scope. This is the number of the
associated rVariable (the rVariable being described in some way by the zEntry).

The data type of the specified entry. Specify one of the data types defined in Section
4.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

189

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.36.1. Example(s)

The following example writes one variable attribute’s rEntry. It is to the variable scope attribute VALIDs for the rEntry
that corresponds to the zVariable TMP. This entry has two (2) elements, each one is of CDF_INT2 type.

INCLUDE "<path>cdf. inc

INTEGER*4 id

INTEGER*4 status
INTEGER*4 num_elements
INTEGER*2 TMPvalids(2)

DATA TMPvalids/15,30/

num_elements = 2

I CDF identifier.

I Returned status code.

I Number of elements (of data type).
I Value(s) of VALIDs attribute,

CALL CDF _put_attr_rentry (id, CDF_get attr_num(id, "VALIDs"),

1
2

CDF_get_var_num(id, "TMP®),
CDF_INT2, num_elements, TMPvalids, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.37 CDF_put_attr_zentry

SUBROUTINE CDF_put_attr_zentry (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entry_num,

INTEGER*4 num_elements,
<type> value,
INTEGER*4 status)

!

!

!
INTEGER*4 data_type, i

!

!

!

in -- CDF identifier.

in -- Variable attribute number.

in -- Entry number.

in -- Data type of this entry.

in -- Number of elements (of the data type).

in -- Value (<type> is dependent on the data type of the enrty).

out -- Completion status

CDF_put_attr_zentry is used to write an entry, corresponding to a zVariable, (zEntry) to a variable attribute in a CDF.
The entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of
that data type) may be changed when overwriting an existing entry.

The arguments to CDF_put_attr_zentry are defined as follows:

190

attr_num

entry_num

data_type

num_elements

value

status

6.4.37.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The attribute number. This number may be determined with a call to
CDF _get_attr_num (see Section 6.4.17).

The entry number. The attribute must be variable in scope. This is the number of the
associated zVariable (the zVariable being described in some way by the zEntry).

The data type of the specified entry. Specify one of the data types defined in Section
4.5,

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example writes one variable attribute’s zEntry. It is to the variable scope attribute VALIDs for the
zEntry that corresponds to the zVariable TMP. This entry has two (2) elements, each one is of CDF_INT2 type.

INCLUDE *<path>cdf.inc"

INTEGER*4 id
INTEGER*4 status

1 CDF identifier.
1 Returned status code.

INTEGER*4 num_elements I Number of elements (of data type).
INTEGER*2 TMPvalids(2) I Value(s) of VALIDs attribute,

DATA TMPvalids/15,30/

num_elements

CALL CDF _put_attr_zentry (id, CDF_get attr_num(id, "VALIDs"),

1
2

CDF_get_var_num(id, "TMP*®),
CDF_INT2, num_elements, TMPvalids, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

191

6.4.38 CDF_rename_attr

SUBROUTINE CDF_rename_attr (

INTEGER*4 id,
INTEGER*4 num_attr,
CHARACTER attr_name*(*),
INTEGER*4 status)

in -- CDF identifier.
in -- Attribute number.
in -- New attribute name.

|
|
!
I out -- Completion status.

CDF_rename_attr is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDF_rename_attr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

attr_num The number of the attribute to rename. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

attr_name The new attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.
Attribute names are case-sensitive.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.38.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_rename_attr (id, CDF _get attr_num(id,"LAT"), "LATITUDE", status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.39 CDF_set_attr_gentry_ dataspec

SUBROUTINE CDF_set_attr_gentry_dataspec (

INTEGER*4 id, ! in-- CDF identifier.

192

in -- Global attribute number.
in -- gEntry number.

in -- Data type.

out -- Completion status

INTEGER*4 attr_num,
INTEGER*4 entry_num,
INTEGER*4 data_type,

!
[
!
INTEGER*4 status) !

CDF_set_attr_gentry dataspec respecifies the data specification (data type and number of elements) of a gEntry of a
global attribute in a CDF. The only part of the data specification that can be changed is the data type. However, the new
and old data type must be equivalent. Refer to the CDF User’s Guide for the descriptions of equivalent data types.

The arguments to CDF_set_attr_gentry_dataspec are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The (global) attribute number.
entry_num The gEntry number.
data_type The data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.39.1. Example(s)

The following example modifies a gEntry’s (numbered 2) data specification in the global attribute “MY_ATTR” in a
CDF. It will change it’s original data type from CDF_INT2 to CDF_UINT2.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 entry_num I gEntry number.
INTEGER*4 status I Returned status code.

entry_num = 2

CALL CDF_set_attr_gentry dataspec (id, CDF _get attr_num(id, “MY_ATTR?),
1 entry _num, CDF_UINT2, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.40 CDF_set_attr_rentry_dataspec

SUBROUTINE CDF_set_attr_rentry_dataspec (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 attr_num, ! in -- Variable attribute number.

193

INTEGER*4 entry_num, ! in -- rEntry number.
INTEGER*4 data_type, ! in -- Data type.
INTEGER*4 status) ! out -- Completion status

CDF_set_attr_rentry_dataspec respecifies the data specification (data type and number of elements) of an rEntry,
corresponding to an rVariable, of a variable attribute in a CDF. The only part of the data specification that can be
changed is the data type. However, the new and old data type must be equivalent. Refer to the CDF User’s Guide for
the descriptions of equivalent data types.

The arguments to CDF_set_attr_rentry_dataspec are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The (variable) attribute number.
entry_num The rEntry number.
data_type The data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.40.1. Example(s)

The following example modifies an rEntry’s (corresponding to rVariable “MY_VAR?”) data specification in the
variable attribute “MY_ATTR” in a CDF. It will change it’s original data type from CDF_INT2 to CDF_UINT2.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_set_attr_rentry dataspec (id, CDF _get attr_num(id, “MY_ATTR”),
1 CDF_get_var_num(id, “MY_VAR?),

2 CDF_UINT2, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.41 CDF_set_attr_scope

SUBROUTINE CDF_set_attr_scope (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 attr_num, I in -- Attribute number.
INTEGER*4 scope, ! in -- Attribute scope.

194

INTEGER*4 status) ! out -- Completion status

CDF_set_attr_scope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 4.12.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.

The arguments to CDF_set_attr_scope are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
scope The attribute scope.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.41.1. Example(s)

The following example respecifies the scope to VARIABLE_SCOPE (from its original GLOBAL_SCOPE) for
attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_set_attr_scope (id, CDF_get attr_num(id, “MY_ATTR”), VARIABLE_ SCOPE,
1 status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.42 CDF _set_attr_zentry dataspec

SUBROUTINE CDF _set_attr_zentry dataspec (

INTEGER*4 data_type,
INTEGER*4 status)

in -- Data type.
out -- Completion status

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 attr_num, ! in -- Variable attribute number.
INTEGER*4 entry_num, ! in -- zEntry number.

!

!

CDF_set_attr_zentry dataspec respecifies the data specification (data type and number of elements) of a zEntry,
corresponding to a zVariable, of a variable attribute in a CDF. The only part of the data specification that can be
changed is the data type. However, the new and old data type must be equivalent. Refer to the CDF User’s Guide for
the descriptions of equivalent data types.

195

The arguments to CDF_set_attr_zentry dataspec are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The (variable) attribute number.
entry_num The zEntry number.

data_type The data type.

num_elems The number of elements.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.42.1. Example(s)

The following example modifies a zEntry’s (corresponding to zVariable “MY_VAR”) data specification in the variable
attribute “MY_ATTR” in a CDF. It will change it’s original data type from CDF_INT2 to CDF_UINT2.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_set_attr_zentry dataspec (id, CDF _get attr_num(id, “MY_ATTR?),
1 CDF_get_var_num(id, “MY_VAR?),
2 CDF_UINT2, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

196

Chapter 7

7 Internal Interface — CDF_lib

The Internal interface consists of only one routine, CDF_lib.> CDF_lib can be used to perform all possible operations
on a CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDF_lib must
be used to perform operations not possible with the Standard Interface functions. These operations would involve CDF
features added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF,
accessing zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDF _lib can also be used to
perform certain operations more efficiently than with the Standard Interface functions.

CDF_lib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a
CDF, creating an attribute, or writing a variable value). The operations are performed according to the order of the
arguments. Each operation consists of a function being performed on an item. An item may be either an object (e.g., a
CDF, variable, or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute).
The possible functions and corresponding items (on which to perform those functions) are described in Section 7.6.

7.1 Example(s)

The easiest way to explain how to use CDF_lib would be to start with a few examples. The following example shows
how a CDF would be created with the single-file format (assuming multi-file is the default).

INCLUDE *<path>cdf.inc"

CDF identifier.
Returned status code.
Name of the CDF.
Number of dimensions.
Dimension sizes.
Format of CDF.

INTEGER*4 id

INTEGER*4 status
CHARACTER CDF_name*5
INTEGER*4 num_dims
INTEGER*4 dim_sizes(1)
INTEGER*4 format

DATA CDF_name/"“testl"/, num_dims/0/, dim_sizes/0/,

! See section 6.5.1 for an ugly exception to this.

197

1 format/SINGLE_FILE/

CALL CDF_create_cdf (CDF_name, id, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

status
2

CDF_lib (PUT_, CDF_FORMAT , format,

NULL_, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

The call to CDF_create created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDF _lib is then used to change the format to single-file (which must be done before any variables are created in

the CDF).

The arguments to CDF _lib in this example are explained as follows:

PUT_

CDF_FORMAT

format

NULL_

status

The first function to be performed. in this case An item is going to be put to the
“current” CDF (a new format). PUT _ is defined in cdf.inc (as are all CDF constants). It
was not necessary to select a current CDF since the call to CDF_create implicitly
selected the CDF created as the current CDF.? This is the case since all of the Standard
Interface functions actually call the Internal Interface to perform their operations.

The item to be put. In this case it is the CDF's format.

The actual format for the CDF. Depending on the item being put, one or more
arguments would have been necessary. In this case only one argument is necessary.

This argument could have been one of two things. It could have been another item to put
(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL_function.
NULL _indicates the end of the call to CDF_lib. Specifying NULL_at the end of the
argument list is required because not all compilers/operating systems provide the ability
for a called function to determine how many arguments were passed in by the calling
function.

The completion status code. Note that CDF_lib also returns the completion status code.?
Chapter 8 explains how to interpret status codes.

The next example shows how the same CDF could have been created using only one call to CDF_lib. (The
declarations would be the same.)

status
1
2

CDF_lib (CREATE_, CDF_, CDF_name, num _dims, dim_sizes, id,

PUT_, CDF_FORMAT , format,
NULL_, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

% In previous releases of CDF, it was required that the current CDF be selected in each call to CDF_lib. That
requirement has been eliminated. The CDF library now maintains the current CDF from one call to the next of

CDF_lib.

¥ Section 6.5 explains why it does both.

198

The purpose of each argument is as follows:

CREATE_

CDF_

CDF_name
num_dims
dim_sizes

id

PUT_

CDF_FORMAT_

format

NULL_

status

The first function to be performed. In this case something will be created.

The item to be created - a CDF in this case. There are four required arguments that
must follow. When a CDF is created (with CDF _lib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

The file name of the CDF.

The number of dimensions in the CDF.

The dimension sizes.

The identifier to be used when referencing the created CDF in subsequent
operations.

This argument could have been one of two things. Another item to create or a new
function to perform. In this case it is another function to perform - something will
be put to the CDF.

Once again this argument could have been either another item to put or a new
function to perform. It is another item to put - the CDF's format.

The format to be put to the CDF.

This argument could have been either another item to put or a new function to
perform. Here it is another function to perform - the NULL_function that ends the
call to CDF_lib.

The completion status code. Note that CDF_lib also returns the completion status
code. Chapter 8 explains how to interpret status codes.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

7.2 Current Objects/States (Items)

The use of CDF_lib requires that an application be aware of the current objects/states maintained by the CDF library.
The following current objects/states are used by the CDF library when performing operations.

CDF (object)

A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a
CDF is opened or created. The current CDF may be explicitly selected using the <SELECT_,CDF_>* operation.
There is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly

selected.®

* This notation is used to specify a function to be performed on an item. The syntax is <function_,item_>.
® In previous releases of CDF, it was required that the current CDF be selected in each call to CDF_lib. That
requirement no longer exists. The CDF library now maintains the current CDF from one call to the next of CDF _lib.

199

rVVariable (object)
An rVariable operation is always performed on the current rVVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,rVAR_> or <SELECT_,rVAR_NAME_>
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)
A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,zZVAR_> or <SELECT_,zZVAR_NAME_>
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)
An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a
current attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,ATTR_> or <SELECT ,ATTR_NAME_>
operations. There is no current attribute in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

gEntry number (state)
A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry
number must be explicitly selected with the <SELECT_,gENTRY _> operation. (There is no implicit or default
selection of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the
CDF (not each attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)
A VAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry
number must be explicitly selected with the <SELECT _,rENTRY_> operation. (There is no implicit or default
selection of the current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

zEntry number (state)
A vAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry
number must be explicitly selected with the <SELECT ,zZENTRY_> operation. (There is no implicit or default
selection of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)
An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT_,rVARs RECNUMBER_> operation. Note that the current record
number for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that
CDF.

record count, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record count for the rVariables
in the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT ,rVARs_ RECCOUNT _> operation. Note that the

200

current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

record interval, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record interval for the
rVariables in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is
initialized to one (1). It may then be explicitly selected using the <SELECT ,rVARs RECINTERVAL >
operation. Note that the current record interval for rVariables is maintained for a CDF (not each rVariable) - it
applies to all of the rVariables in that CDF.

dimension indices, rVVariables (state)
An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT_,rVARs_DIMINDICES_ > operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension indices are not applicable.

dimension counts, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT_,rVARs_DIMCOUNTS_> operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its
rVariables are initialized to ones 11,.). They may then be explicitly selected using the
<SELECT ,rVARs_DIMINTERVALS > operation. Note that the current dimension intervals for rVVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVVariable (state)
An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT _,rVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
rVariable in a CDF.

record number, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being
opened), the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected
using the <SELECT_,zVAR_RECNUMBER_> operation (which only affects the current zVariable in the current
CDF). Note that a current record number is maintained for each zVariable in a CDF.

record count, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the
current record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR_RECCOUNT_> operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

201

record interval, zVariable (state)

A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR_RECINTERVAL_> operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

dimension indices, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT_,zVAR_DIMINDICES_>
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which
specifies the entire array). They may then be explicitly selected using the <SELECT_,zZVAR_DIMCOUNTS_>
operation (which only affects the current zVariable in the current CDF). Note that current dimension counts are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not
applicable.

dimension intervals, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension intervals for the
current zZVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened),
the current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly
selected using the <SELECT _,zVAR_DIMINTERVALS_> operation (which only affects the current zVariable in
the current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-
dimensional zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)

A zVariable sequential read or write operation is always performed at the current sequential value for that
zVariable. When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT _,zVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
zVariable in a CDF.

status code (state)

7.3

When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current
status code may be selected using the <SELECT ,CDF_STATUS > operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed.®

Returned Status

® The CDF library now maintains the current status code from one call to the next of CDF_lib.

202

CDF_lib returns a status code of type INTEGER*4 in the last argument given.” Since more than one operation may be
performed with a single call to CDF_lib, the following rules apply:

1. The first error detected aborts the call to CDF _lib, and the corresponding status code is returned.

2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.
4. In the absence of any errors, warnings, or informational conditions, CDF_OK is returned.

Chapter 8 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error,
warning, or informational.

7.4 Indentation/Style

Indentation should be used to make calls to CDF _lib readable. The following example shows a call to CDF _lib using
proper indentation.

status = CDF_lib (CREATE_, CDF_, CDF_name, num_dims, dim_sizes, id,
PUT_, CDF_FORMAT_, format,
CDF_MAJORITY_, majority,
CREATE_, ATTR_, attr_name, scope, attr_num,
rVAR_, var_name, data type, num_elements,
rec_vary, dim_varys, var_num,

OO~ WNPE

NULL_, status)

Note that the functions (CREATE, PUT_, and NULL_) are indented the same and that the items (CDF_,
CDF_FORMAT_, CDF_MAJORITY_, ATTR_, and rVAR_) are indented the same under their corresponding
functions.

The following example shows the same call to CDF_lib without the proper indentation.

status = CDF_lib (CREATE , CDF_, CDF_name, num_dims, dim_sizes, id, PUT_,
CDF_FORMAT_, format, CDF_MAJORITY_, majority, CREATE ,
ATTR_, attr_name, scope, attr_num, rVAR_, var_name,
data_type, num_elements, rec_vary, dim_varys, var_num,
NULL_, status)

A WNBEF

The need for proper indentation to ensure the readability of your applications should be obvious.

7.5 Syntax

CDF_lib takes a variable number of arguments. There must always be at least one argument. The maximum number
of arguments is not limited by CDF but rather the Fortran compiler and operating system being used. Under normal

" CDF_lib has been changed from a subroutine to a function and now also returns the status code.

203

circumstances that limit would never be reached (or even approached). Note also that a call to CDF_lib with a large
number of arguments can always be broken up into two or more calls to CDF _lib with fewer arguments.

The syntax for CDF_lib is as follows:

status = CDF_lib (fncl, iteml, argl, arg2, ...argN,

+ item2, argl, arg2, ...argN,
+ itemN, argl, arg2, ...argN,
+ fnc2, iteml, argl, arg2, ...argN,
+ item2, argl, arg2, ...argN,
+ itemN, argl, arg2, ...argN,
+ fncN, iteml, argl, arg2, ...argN,
+ item2, argl, arg2, ...argN,
+ itemN, argl, arg2, ...argN,
+ NULL_, status)

where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required
argument for the operation. The NULL_function must be used to end the call to CDF_lib. The completion status,
status, is returned.

Previously, CDF_lib was a subroutine. It was changed to a function which returns the completion status code (and still
stores it in the last argument) to ease the debugging of calls to CDF _lib.® If in a call to CDF lib an unknown function
or item is specified, or if an operation's argument is missing, the status argument would never be reached (and
BAD_FNC_OR_ITEM would not be stored). By returning the completion status code this situation should not occur.
Note that the same Fortran variable can be used to receive the status code and as the last argument in the call to
CDF_lib.

75.1 Macintosh, MPW Fortran

The MPW Fortran compiler does not allow variable length argument lists such as those used by CDF_lib.° For that
reason, a number of additional Internal Interface functions are available named CDF _lib_4, CDF_lib_5, etc. Each of
these functions expects the number of arguments indicated by their names. The maximum number of arguments is at
least 25 (corresponding to CDF_lib_25) but can be increased if necessary by contacting CDF support. Using these
functions, the second example shown in this section would be as follows:

étatus = CDF_lib_15 (CREATE_, CDF_, CDF_name, num_dims, dim_sizes, id,
1 PUT_, CDF_ENCODING_, encoding,
2 CDF_MAJORITY_, majority,

& Current applications do not have to be changed because the completion status code is still stored in the last argument.
° If you know of a way to make MPW Fortran accept variable length argument lists, by all means let us know. We
don't like having to do this any more than you do.

204

3 CDF_FORMAT _, format,
4 NULL_, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

Note that CDF_lib may still be used but with the same number of arguments for each occurrence.

7.6 Operations. ..

An operation consists of a function being performed on an item. The supported functions are as follows:

CLOSE_ Used to close an item.

CONFIRM _ Used to confirm the value of an item.

CREATE_ Used to create an item.

DELETE_ Used to delete an item.

GET_ Used to get (read) something from an item.

NULL_ Used to signal the end of the argument list of an internal interface call.
OPEN _ Used to open an item.

PUT_ Used to put (write) something to an item.

SELECT _ Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below.
The required preselected objects/states are those objects/states that must be selected (typically with the SELECT _
function) before a particular operation may be performed. Note that some of the required preselected objects/states have
default values as described at Section 7.2.
<CLOSE_,CDF_>

Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to

ensure that it will be properly written to disk.

There are no required arguments.

The only required preselected object/state is the current CDF.

<CLOSE_,rVAR >
Closes the current rVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE_,zVAR_>
Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_ATTR_>
Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: INTEGER*4 attr_num

205

Attribute number.
The only required preselected object/state is the current CDF.
<CONFIRM_,ATTR_EXISTENCE_>
Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:
in: CHARACTER attr_name*(*)
The attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_>
Confirms the current CDF. Required arguments are as follows:

out: INTEGER*4 id
The current CDF.
There are no required preselected objects/states.
<CONFIRM_,CDF_ACCESS >
Confirms the accessability of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO_MORE_ACCESS will be returned. If this is the case, the CDF should still be closed.
There are no required arguments.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_CACHESIZE_>
Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_DECODING_>
Confirms the decoding for the current CDF. Required arguments are as follows:

out: INTEGER*4 decoding
The decoding. The decodings are described in Section 4.7.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NAME_>
Confirms the file name of the current CDF. Required arguments are as follows:

out: CHARACTER CDF_name*(CDF_PATHNAME_LEN)

206

File name of the CDF.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NEGtoPOSfp0_MODE_>
Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:

out: INTEGER*4 mode
The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 4.15.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_READONLY_MODE_>
Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: INTEGER*4 mode
The read-only mode. The read-only modes are described in Section 4.13.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_STATUS >
Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT _,CDF_STATUS_> operation).
Required arguments are as follows:
out: INTEGER™*4 status
The status code.

The only required preselected object/state is the current status code.

<CONFIRM_,zMODE_>
Confirms the zMode for the current CDF. Required arguments are as follows:

out: INTEGER*4 mode
The zMode. The zModes are described in Section 4.14.
The only required preselected object/state is the current CDF.
<CONFIRM_,COMPRESS_CACHESIZE_>
Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CURgENTRY_EXISTENCE_>

207

Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).
If the gEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.
<CONFIRM_,CURFENTRY_EXISTENCE_>

Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF).

If the rEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<CONFIRM_,CURZENTRY_EXISTENCE_>

Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).

If the zEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,gENTRY_>
Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 entry_num
The gEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,gENTRY_EXISTENCE_>

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required
arguments are as follows:

in: INTEGER*4 entry_num

The gEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.

<CONFIRM_,rENTRY_>
Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 entry_num

208

The rEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,rENTRY_EXISTENCE_>
Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does
not exist, An error code will be returned. in any case the current rEntry number is not affected. Required
arguments are as follows:
in: INTEGER*4 entry_num
The rEntry number.
The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,rVAR_>
Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 var_num
rVVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,r'VAR_CACHESIZE_>
Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,r'VAR_EXISTENCE_>
Confirms the existence of the named rVariable (in the current CDF). If the rVVariable does not exist, an error
code will be returned. in any case the current rVariable is not affected. Required arguments are as follows:
in: CHARACTER var_name*(*)
The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVAR_PADVALUE_>
Confirms the existence of an explicitly specified pad value for the current rVVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

209

<CONFIRM_,rVAR_RESERVEPERCENT_>
Confirms the reserve percentage being used for the current rVariable (of the current CDF). This operation is
only applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: INTEGER*4 percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,r'VAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
out: INTEGER*4 rec_num
Record number.

out: INTEGER*4 indices(CDF_MAX_DIMS)

Dimension indices. Each element of indices receives the corresponding dimension index. For O-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVARs_DIMCOUNTS_>
Confirms the current dimension counts for all rVVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: INTEGER*4 counts(CDF_MAX_DIMS)
Dimension counts. Each element of counts receives the corresponding dimension count.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVARs_DIMINDICES_>
Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: INTEGER*4 indices(CDF_MAX_DIMS)
Dimension indices. Each element of indices receives the corresponding dimension index.
The only required preselected object/state is the current CDF.
<CONFIRM_,r'VARs_DIMINTERVALS >
Confirms the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 intervals(CDF_MAX_DIMS)

Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

210

<CONFIRM_,r'VARs_RECCOUNT_>
Confirms the current record count for all rVVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 rec_count
Record count.
The only required preselected object/state is the current CDF.

<CONFIRM_,r'VARs_RECINTERVAL_>
Confirms the current record interval for all rVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 rec_interval
Record interval.
The only required preselected object/state is the current CDF.

<CONFIRM_,r'VARs_RECNUMBER_>
Confirms the current record number for all rVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 rec_num
Record number.
The only required preselected object/state is the current CDF.
<CONFIRM_,STAGE_CACHESIZE_>
Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,ZENTRY_>
Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 entry_num
The zEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,ZENTRY_EXISTENCE_>
Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required
arguments are as follows:

in: INTEGER*4 entry_num

The zEntry number.

211

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,zVAR_>
Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 var_num
zVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,zZVAR_CACHESIZE_>
Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_DIMCOUNTS_>
Confirms the current dimension counts for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 counts(CDF_MAX_DIMS)
Dimension counts. Each element of counts receives the corresponding dimension count.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_DIMINDICES_>
Confirms the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 indices(CDF_MAX_DIMS)
Dimension indices. Each element of indices receives the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_DIMINTERVALS >
Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 intervals(CDF_MAX_DIMS)
Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_EXISTENCE_>

212

Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error
code will be returned. in any case the current zVariable is not affected. Required arguments are as follows:

in: CHARACTER var_name*(*)
The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
The only required preselected object/state is the current CDF.
<CONFIRM_,zZVAR_PADVALUE_>
Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECCOUNT_>
Confirms the current record count for the current zVariable in the current CDF. Required arguments are as
follows:
out: INTEGER*4 rec_count
Record count.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECINTERVAL _>
Confirms the current record interval for the current zZVariable in the current CDF. Required arguments are as
follows:
out: INTEGER*4 rec_interval
Record interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECNUMBER_>
Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
out: INTEGER*4 rec_num
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RESERVEPERCENT_>
Confirms the reserve percentage being used for the current zVariable (of the current CDF). This operation is
only applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

out: INTEGER*4 percent

The reserve percentage.

213

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note

that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
out: INTEGER*4 rec_num
Record number.
out: INTEGER*4 indices(CDF_MAX_DIMS)

Dimension indices. Each element of indices receives the corresponding dimension index. For O-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<CREATE_ATTR_>
A new attribute will be created in the current CDF. An attribute with the same name must not already exist in

the CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required
arguments are as follows:

in: CHARACTER attr_name*(*)

Name of the attribute to be created. This can be at most CDF_ ATTR_NAME_LEN256 characters.
Attribute names are case-sensitive.

in: INTEGER*4 scope
Scope of the new attribute. Specify one of the scopes described in Section 4.12.

out: INTEGER*4 attr_num

Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute. An existing attribute's number may also be determined with the
<GET_,ATTR_NUMBER_> operation.

The only required preselected object/state is the current CDF.
<CREATE_,CDF_>
A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly

becomes the current CDF. Required arguments are as follows:

in: CHARACTER CDF_name*(*)
File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory specifications
that conform to the conventions of the operating system being used (including logical names on VMS
systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.

in: INTEGER*4 num_dims

214

Number of dimensions for the rVariables. This can be as few as zero (0) and at most
CDF_MAX_DIMS. Note that this must be specified even if the CDF will contain only zVariables.

in: INTEGER*4 dim_sizes(*)
Dimension sizes for the rVariables. Each element of dim_sizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For O-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.
out: INTEGER*4 id
CDF identifier to be used in subsequent operations on the CDF.
A CDF is created with the default format, encoding, and variable majority as specified in the configuration file
of your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be

changed with the corresponding <PUT_,CDF_FORMAT >, <PUT_,CDF_ENCODING >, and
<PUT _,CDF_MAJORITY_> operations if necessary.

A CDF must be closed with the <CLOSE_,CDF_> operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.

<CREATE_,rVAR_>
A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the
current CDF). Required arguments are as follows:
in: CHARACTER var_name*(*)

Name of the rVariable to be created. This can be at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL). Variable names are case-sensitive.

in: INTEGER*4 data_type
Data type of the new rVariable. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: INTEGER*4 rec_vary
Record variance. Specify one of the variances described in Section 4.9.

in: INTEGER*4 dim_varys(*)
Dimension variances. Each element of dim_varys specifies the corresponding dimension variance.
For each dimension specify one of the variances described in Section 4.9. For 0-dimensional

rVVariables this argument is ignored (but must be present).

out: INTEGER*4 var_num

215

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls
when referring to this rVVariable. An existing rVariable's number may also be determined with the
<GET_,rVAR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<CREATE_,zVAR_>
A new zVariable will be created in the current CDF. A variable (rVVariable or zVariable) with the same name
must not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the
current CDF). Required arguments are as follows:
in: CHARACTER var_name*(*)

Name of the zVariable to be created. This can be at most CDF_VAR_NAME_LEN256
characters. Variable names are case-sensitive.

in: INTEGER*4 data_type
Data type of the new zVariable. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: INTEGER*4 num_dims
Number of dimensions for the zVariable. This may be as few as zero and at most CDF_MAX_DIMS.

in: INTEGER*4 dim_sizes(*)
The dimension sizes. Each element of dim_sizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).

in: INTEGER*4 rec_vary
Record variance. Specify one of the variances described in Section 4.9.

in: INTEGER*4 dim_varys(*)
Dimension variances. Each element of dim_varys specifies the corresponding dimension variance.
For each dimension specify one of the variances described in Section 4.9. For a 0-dimensional
zVariable this argument is ignored (but must be present).

out: INTEGER*4 var_num
Number assigned to the new zVariable. This number must be used in subsequent CDF function calls
when referring to this zVariable. An existing zVariable's number may also be determined with the

<GET_,zZVAR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

216

<DELETE_,ATTR >
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes
which numerically follow the attribute being deleted are immediately renumbered. When the attribute is deleted,
there is no longer a current attribute.

There are no required arguments.

The required preselected objects/states are the current CDF and its current attribute.

<DELETE_,CDF_>
Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no
longer a current CDF.
There are no required arguments.

The only required preselected object/state is the current CDF.

<DELETE_,gENTRY_>
Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<DELETE_,rENTRY_>
Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does

not affect the current rEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE_,rVAR_>
Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also
deleted (from each vAttribute). The rVariables which numerically follow the rVariable being deleted are
immediately renumbered. The rEntries which numerically follow the rEntries being deleted are also
immediately renumbered. When the rVariable is deleted, there is no longer a current rVariable. NOTE: This
operation is only allowed on single-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,rVAR_RECORDS >

Deletes the specified range of records from the current rVVariable (in the current CDF). If the rVariable has

sparse records a gap of missing records will be created. If the rVariable does not have sparse records, the

records following the range of deleted records are immediately renumbered beginning with the number of the

first deleted record. NOTE: This operation is only allowed on single-file CDFs.

Required arguments are as follows:

217

in: INTEGER*4 first_record
The record number of the first record to be deleted.
in: INTEGER*4 last_record
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,zENTRY_>
Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does
not affect the current zEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE_,zZVAR_>
Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also
deleted (from each vAttribute). The zVariables which numerically follow the zVariable being deleted are
immediately renumbered. The rEntries which numerically follow the rEntries being deleted are also
immediately renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This
operation is only allowed on single-file CDFs.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,zZVAR_RECORDS_>
Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has
sparse records a gap of missing records will be created. If the zVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as
follows:
in: INTEGER*4 first_record
The record number of the first record to be deleted.
in: INTEGER*4 last_record
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,ATTR_MAXgENTRY_>
Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: INTEGER*4 max_entry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of —1 will be passed
back.

218

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,ATTR_MAXrENTRY_>

Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: INTEGER*4 max_entry
The maximum rEntry number for the attribute. If no rEntries exist, then a value of -1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_ATTR_MAXZENTRY_>

Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: INTEGER*4 max_entry

The maximum zEntry number for the attribute. 1f no zEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_ATTR_NAME_>

Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

out: CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)

Attribute name. This character string will be blank padded if necessary.
UNIX: For the proper operation of CDF _lib, attr_name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current attribute.
<GET_ATTR_NUMBER_>

Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in: CHARACTER attr_name*(*)

Attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.
UNIX: For the proper operation of CDF_lib, attr_name MUST be a Fortran CHARACTER variable
or constant.

out: INTEGER*4 attr_num

219

The attribute number.
The only required preselected object/state is the current CDF.
<GET_,ATTR_NUMgENTRIES_>
Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum gEntry number used. Required arguments are as follows:
out: INTEGER*4 num_entries
The number of gEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.
<GET_,ATTR_NUMrENTRIES_>
Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum rEntry number used. Required arguments are as follows:
out: INTEGER*4 num_entries
The number of rEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,ATTR_NUMZzENTRIES_>
Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum zEntry number used. Required arguments are as follows:
out: INTEGER*4 num_entries
The number of zEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_SCOPE_>
Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: INTEGER*4 scope
Attribute scope. The scopes are described in Section 4.12.
The required preselected objects/states are the current CDF and its current attribute.
<GET_,CDF_COMPRESSION_>
Inquires the compression type/parameters of the current CDF. This refers to the compression of the CDF - not
of any compressed variables. Required arguments are as follows:

out: INTEGER*4 c_type

The compression type. The types of compressions are described in Section 4.10.

220

out: INTEGER*4 c_parms(CDF_MAX_PARMS)

The compression parameters. The compression parameters are described in Section 4.10.
out: INTEGER*4 c_pct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.
<GET_,CDF_COPYRIGHT >

Reads the copyright notice for the CDF library that created the current CDF. Required arguments are as follows:

out: CHARACTER copy._right*(CDF_COPYRIGHT_LEN)

CDF copyright text. The character string will be padded if necessary.
UNIX: For the proper operation of CDF _lib, copy_right MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING_>

Inquires the data encoding of the current CDF. Required arguments are as follows:

out: INTEGER*4 encoding

Data encoding. The encodings are described in Section 4.6.

The only required preselected object/state is the current CDF.

<GET_,CDF_FORMAT >
Inquires the format of the current CDF. Required arguments are as follows:

out: INTEGER*4 format

CDF format. The formats are described in Section 4.4.

The only required preselected object/state is the current CDF.
<GET_,CDF_INCREMENT_>

Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:
out: INTEGER*4 increment
Incremental number.

The only required preselected object/state is the current CDF.
<GET_,CDF_INFO_>

Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:

221

in. CHARACTER CDF_name*(*)
File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory specifications
that conform to the conventions of the operating system being used (including logical names on VMS
systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.
UNIX: For the proper operation of CDF_lib, CDF_name MUST be a Fortran CHARACTER variable
or constant.
out: INTEGER*4 c_type
The CDF compression type. The types of compressions are described in Section 4.10.
out: INTEGER*4 c_parms(CDF_MAX_PARMS)
The compression parameters. The compression parameters are described in Section 4.10.
out: INTEGER*8Y ¢_size
If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).

out: INTEGER*8" u_size

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

There are no required preselected objects/states.

<GET_,CDF_MAJORITY_>
Inquires the variable majority of the current CDF. Required arguments are as follows:

out: INTEGER*4 majority
Variable majority. The majorities are described in Section 4.8.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS_>
Inquires the number of attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_attrs
Number of attributes.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMgATTRS_>
Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_attrs

%You need to have a Fortran compiler supporting 8-byte integer.

222

Number of gAttributes.
The only required preselected object/state is the current CDF.
<GET_,CDF_NUMrVARS_>
Inquires the number of rVariables in the current CDF. Required arguments are as follows:
out: INTEGER*4 num_vars
Number of rVVariables.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMVATTRS >
Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_attrs
Number of vAttributes.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMzVARS_>
Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_vars
Number of zVariables.
The only required preselected object/state is the current CDF.

<GET_,CDF_RELEASE_ >
Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: INTEGER*4 release
Release number.
The only required preselected object/state is the current CDF.
<GET_,CDF_VERSION_>
Inquires the version number of the CDF library that created the current CDF. Required arguments are as
follows:
out: INTEGER*4 version
Version number.

The only required preselected object/state is the current CDF.

<GET_,DATATYPE_SIZE >
Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: INTEGER*4 data_type

223

Data type.
out: INTEGER*4 num_bytes
Number of bytes per element.
There are no required preselected objects/states.
<GET_,gENTRY_DATA_>
Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF).
Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. (<type> is dependent on the data type of the
gEnrty). The value is read from the CDF and placed into memory at address value.

WARNING: If the gEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the gEntry does not have one of the character
data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,gENTRY_DATATYPE_>
Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: INTEGER*4 data_type
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.
<GET_,gENTRY_NUMELEMS_ >
Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: INTEGER*4 num_elements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.

<GET_,LIB_COPYRIGHT_>
Reads the copyright notice of the CDF library being used. Required arguments are as follows:

out: CHARACTER copy_right*(CDF_COPYRIGHT_LEN)

224

CDF library copyright text.

UNIX: For the proper operation of CDF _lib, copy_right MUST be a Fortran CHARACTER variable
or constant.

There are no required preselected objects/states.

<GET_,LIB_INCREMENT_>
Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: INTEGER*4 increment
Incremental number.
There are no required preselected objects/states.

<GET_,LIB_RELEASE_>
Inquires the release number of the CDF library being used. Required arguments are as follows:

out: INTEGER*4 release
Release number.
There are no required preselected objects/states.

<GET_,LIB_subINCREMENT >
Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

out: CHARACTER*1 *subincrement
Subincremental character.

UNIX: For the proper operation of CDF_lib, subincrement MUST be a Fortran CHARACTER
variable or constant.

There are no required preselected objects/states.

<GET_,LIB_VERSION_>
Inquires the version number of the CDF library being used. Required arguments are as follows:

out: INTEGER*4 version
Version number.
There are no required preselected objects/states.
<GET_/rENTRY_DATA_>
Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF).
Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rEnrty. The value is read from the CDF and placed into memory at address value.

225

WARNING: If the rEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the rEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,(ENTRY_DATATYPE_>
Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: INTEGER*4 data_type
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,(ENTRY_NUMELEMS_>
Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: INTEGER*4 num_elements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)
this is the number of characters in the string (an array of characters). For all other data types this is
the number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,rVAR_ALLOCATEDFROM >
Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF).
Required arguments are as follows:

in: INTEGER*4 start_record

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: INTEGER*4 next_record
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_ALLOCATEDTO_>
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVariable (in the current CDF). Required arguments are as follows:

in: INTEGER*4 start_record

The record number at which to begin searching for the last allocated record.

226

out: INTEGER*4 next_record
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,r'VAR_BLOCKINGFACTOR_>*
Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User's Guide. Required arguments are as follows:
out: INTEGER*4 blocking_factor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_COMPRESSION_>
Inquires the compression type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:
out: INTEGER*4 c_type
The compression type. The types of compressions are described in Section 4.10.
out: INTEGER*4 c_parms(CDF_MAX_PARMS)
The compression parameters. The compression parameters are described in Section 4.10.

out: INTEGER*4 c_pct

If compressed, the percentage of the uncompressed size of the rVVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,I'VAR_DATA_ >
Reads a value from the current rVariable (in the current CDF). The value is read at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET_,rVAR_DATATYPE_>
Inquires the data type of the current rVariable (in the current CDF). Required arguments are as follows:

! The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

227

out: INTEGER*4 data_type
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_DIMVARYS >
Inquires the dimension variances of the current rVVariable (in the current CDF). For O-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

out: INTEGER*4 dim_varys(CDF_MAX_DIMS)

Dimension variances. Each element of dim_varys receives the corresponding dimension variance.
The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_HYPERDATA >
Reads one or more values from the current rVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

out: <type> buffer

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<GET_,rVAR_MAXallocREC >

Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required

arguments are as follows:

out: INTEGER*4 max_rec
Maximum record number allocated.

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,r'VAR_MAXREC_>

Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a

record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no

records have been written. Required arguments are as follows:

out: INTEGER*4 max_rec

Maximum record number.

228

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_NAME_>

Inquires the name of the current rVVariable (in the current CDF). Required arguments are as follows:

out: CHARACTER var_name*(CDF_VAR_NAME_LEN256

Name of the rVariable. This character string will be padded if necessary.

UNIX: For the proper operation of CDF _lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXENTRIES_>

Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num_entries
Number of index entries.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXLEVELS_>

Inquires the number of index levels for the current r\Variable (in the current CDF). This only has significance for

rVVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num_levels
Number of index levels.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXRECORDS_>

Inquires the number of index records for the current rVVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num_records
Number of index records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMallocRECS_>

Inquires the number of records allocated for the current rVVariable (in the current CDF). The Concepts chapter in

the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments are
as follows:

out: INTEGER*4 num_records

Number of allocated records.

229

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_NUMBER_>

Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current
rVariable. Required arguments are as follows:

in: CHARACTER var_name*(*)
The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF _lib, var_name MUST be a Fortran CHARACTER variable
or constant.

out: INTEGER*4 var_num
The rVariable number.
The only required preselected object/state is the current CDF.

<GET_,rVAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:

out: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire

string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_NUMRECS_>

Inquires the number of records written for the current rVVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET_,rVAR_MAXREC_>) if the rVariable has sparse records. Required
arguments are as follows:

out: INTEGER*4 num_records
Number of records written.
The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_PADVALUE_>

Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly
specified for the rVariable (see <PUT_,rVAR PADVALUE >), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the rVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: <type> value

Pad value. This buffer must be large to hold the value. <type> is dependent on the data type of the
pad value. The value is read from the CDF and placed into memory at address value.

230

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_RECVARY_ >
Inquires the record variance of the current rVVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 rec_vary
Record variance. The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_SEQDATA >
Reads one value from the current rVariable (in the current CDF) at the current sequential value for that
rVariable. After the read the current sequential value is automatically incremented to the next value (crossing a

record boundary If necessary). An error is returned if the current sequential value is past the last record for the
rVariable. Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rVVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),

then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are read.

<GET_,rVAR_SPARSEARRAYS >

Inquires the sparse arrays type/parameters of the current rVVariable (in the current CDF). Required arguments are
as follows:

out: INTEGER*4 s_arrays_type

The sparse arrays type. The types of sparse arrays are described in Section 4.11.
out: INTEGER*4 a_arrays_parms(CDF_MAX_PARMS)

The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.
out: INTEGER*4 a_arrays_pct

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_SPARSERECORDS_>

Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as
follows:

231

out: INTEGER*4 s_records_type
The sparse records type. The types of sparse records are described in Section 4.11.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVARs_DIMSIZES >
Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: INTEGER*4 dim_sizes(CDF_MAX_DIMS)
Dimension sizes. Each element of dim_sizes receives the corresponding dimension size.

The only required preselected object/state is the current CDF.

<GET_,rVARs_MAXREC_>
Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of

records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the rVariables contain no records. The maximum record number for an
individual rVVariable may be inquired using the <GET_,rVAR_MAXREC > operation. Required arguments are

as follows:
out: INTEGER*4 max_rec
Maximum record number.
The only required preselected object/state is the current CDF.

<GET_,rVARs_NUMDIMS_>
Inquires the number of dimensions for the rVVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_dims
Number of dimensions.
The only required preselected object/state is the current CDF.

<GET_,rVARs_RECDATA >
Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are

read at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:
in: INTEGER*4 num_vars
The number of rVariables from which to read. This must be at least one (1).
in: INTEGER*4 var_nums(*)

The rVariables from which to read. This array, whose size is determined by the value of num_vars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: <type> buffer

232

The buffer into which the full-physical rVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. <type> must be a Fortran variable that will be
passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address at
which to place the full-physical records being read.) The order of the full-physical r\VVariable records
in this buffer will correspond to the rVVariable numbers listed in varNums, and this buffer will be
contiguous --- there will be no spacing between full-physical rVariable records. Be careful if using
Fortran STRUCTURES to receive multiple full-physical rVariable records. Fortran compilers on some
operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. *?
<GET_,STATUS_TEXT_>
Inquires the explanation text for the current status code. Note that the current status code is NOT the status from
the last operation performed. Required arguments are as follows:
out: CHARACTER text*(CDF_STATUSTEXT_LEN)

Text explaining the status code.

UNIX: For the proper operation of CDF_lib, text MUST be a Fortran CHARACTER variable or
constant.

The only required preselected object/state is the current status code.

<GET_,zZENTRY_DATA_>
Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF).
Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zEnrty. The value is read from the CDF and placed into memory at address value.

WARNING: If the zEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the zEntry does not have one of the character
data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zZENTRY_DATATYPE_>
Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: INTEGER*4 data_type
Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

12 A Standard Interface at Section 5.13 provides the same functionality.

233

<GET_,zZENTRY_NUMELEMS >
Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: INTEGER*4 num_elements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zZVAR_ALLOCATEDFROM_>
Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF).
Required arguments are as follows:

in: INTEGER*4 start_record

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: INTEGER*4 next_record
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_ALLOCATEDTO_>
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:
in: INTEGER*4 start_record
The record number at which to begin searching for the last allocated record.
out: INTEGER*4 next_record
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_BLOCKINGFACTOR_>*
Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User’s Guide. Required arguments are as follows:
out: INTEGER*4 blocking_factor

The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.

The required preselected objects/states are the current CDF and its current zVariable.

3 The item zZVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

234

<GET_,zZVAR_COMPRESSION_>
Inquires the compression type/parameters of the current zVariable (in the current CDF). Required arguments are
as follows:
out: INTEGER*4 c_type

The compression type. The types of compressions are described in Section 4.10.

out: INTEGER*4 ¢_parms(CDF_MAX_PARMS)
The compression parameters. The compression parameters are described in Section 4.10.

out: INTEGER*4 c_pct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DATA >
Reads a value from the current zVariable (in the current CDF). The value is read at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET_,zZVAR_DATATYPE_>
Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 data_type
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_DIMSIZES >
Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 dim_sizes(CDF_MAX_DIMS)
Dimension sizes. Each element of dim_sizes receives the corresponding dimension size.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DIMVARYS_>

235

Inquires the dimension variances of the current zVariable (in the current CDF). For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: INTEGER*4 dim_varys(CDF_MAX_DIMS)

Dimension variances. Each element of dim_varys receives the corresponding dimension variance.
The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_HYPERDATA_>

Reads one or more values from the current zVariable (in the current CDF). The values are read based on the

current record number, current record count, current record interval, current dimension indices, current

dimension counts, and current dimension intervals for that zZVariable (in the current CDF). Required arguments
are as follows:

out: <type> buffer

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zZVariable.
<GET_,zVAR_MAXallocREC_>
Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:
out: INTEGER*4 max_rec
Maximum record number allocated.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_MAXREC_>
Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:
out: INTEGER*4 max_rec
Maximum record number.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NAME_>
Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:

out: CHARACTER var_name*(CDF_VAR_NAME_LEN256)

Name of the zVariable.

236

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_NINDEXENTRIES_>
Inquires the number of index entries for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: INTEGER*4 num_entries
Number of index entries.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_NINDEXLEVELS_>
Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: INTEGER*4 num_levels
Number of index levels.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_nINDEXRECORDS_>
Inquires the number of index records for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: INTEGER*4 num_records
Number of index records.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_NUMallocRECS_>
Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:
out: INTEGER*4 num_records
Number of allocated records.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_NUMBER_>
Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current

zVariable. Required arguments are as follows:

in: CHARACTER var_name*(*)

237

The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

out: INTEGER*4 var_num
The zVariable number.
The only required preselected object/state is the current CDF.
<GET_,zVAR_NUMDIMS >
Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:
out: INTEGER*4 num_dims
Number of dimensions.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_NUMELEMS_>
Inquires the number of elements (of the data type) for the current zVariable (in the current CDF). Required

arguments are as follows:
out: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_NUMRECS_>
Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET_,zZVAR_MAXREC_>) if the zVariable has sparse records. Required
arguments are as follows:

out: INTEGER*4 num_records
Number of records written.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_PADVALUE_>

Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly
specified for the zVariable (see <PUT_,zVAR_PADVALUE >), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: <type> value

Pad value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zVariable. The value is read from the CDF and placed into memory at address value.

238

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_RECVARY_>
Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 rec_vary
Record variance. The variances are described in Section 4.9.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_SEQDATA_>

Reads one value from the current zVariable (in the current CDF) at the current sequential value for that
zVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
zVariable. Required arguments are as follows:

out: <type> value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are read.
<GET_,zZVAR_SPARSEARRAYS_>
Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments
are as follows:
out: INTEGER*4 s_arrays_type
The sparse arrays type. The types of sparse arrays are described in Section 4.11.

out: INTEGER*4 a_arrays_parms(CDF_MAX_PARMS)

The sparse arrays parameters. The sparse arrays parameters are described in Sec-
tion 4.11.

out: INTEGER*4 a_arrays_pct

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_SPARSERECORDS_>
Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as

follows:

out: INTEGER*4 s_records_type

239

The sparse records type. The types of sparse records are described in Section 4.11.
The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVARs_MAXREC >
Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the zVariables contain no records. The maximum record number for an
individual zVariable may be inquired using the <GET_,zZVAR_MAXREC_> operation. Required arguments are
as follows:

out: INTEGER*4 max_rec
Maximum record number.
The only required preselected object/state is the current CDF.

<GET_,zVARs_RECDATA >
Reads full-physical records from one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is read at the current record number for that zVariable. (The record numbers do not have to
be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: INTEGER*4 num_vars
The number of zVariables from which to read. This must be at least one (1).
in: INTEGER*4 var_nums(*)

The zVariables from which to read. This array, whose size is determined by the value of num_vars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: <type> buffer

The buffer into which the full-physical zVariable records being read are to be placed. This buffer
must be large enough to hold the full-physical records. <type> must be a Fortran variable that will be
passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address at
which to place the full-physical records being read.) The order of the full-physical zVariable records
in this buffer will correspond to the zVariable numbers listed in varNums, and this buffer will be
contiguous --- there will be no spacing between full-physical zVariable records. Be careful if using
Fortran STRUCTURES to receive multiple full-physical zVariable records. Fortran compilers on
some operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT_,zZVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zZVAR_RECNUMBER_>). **

<NULL_>

Marks the end of the argument list that is passed to An internal interface call. No other arguments are allowed
after it.

4 A Standard Interface at Section 5.14 provides the same functionality.

240

<OPEN ,CDF_>
Opens the named CDF. The opened CDF implicitly becomes the current CDF. Required arguments are as
follows:
in. CHARACTER CDF_name*(*)

File name of the CDF to be opened. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory specifications
that conform to the conventions of the operating system being used (including logical names on VMS
systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.

UNIX: For the proper operation of CDF_lib, CDF_name MUST be a Fortran CHARACTER variable
or constant.

out: INTEGER*4 id
CDF identifier to be used in subsequent operations on the CDF.
There are no required preselected objects/states.
<PUT_,ATTR_NAME_>

Renames the current attribute (in the current CDF). An attribute with the same name must not already exist in
the CDF. Required arguments are as follows:

in: CHARACTER attr_name*(*)

New attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, attr_name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,ATTR_SCOPE_>
Respecifies the scope for the current attribute (in the current CDF). Required arguments are as follows:

in: INTEGER*4 scope
New attribute scope. Specify one of the scopes described in Section 4.12.
The required preselected objects/states are the current CDF and its current attribute.
<PUT_,CDF_COMPRESSION_>
Specifies the compression type/parameters for the current CDF. This refers to the compression of the CDF - not
of any variables. Required arguments are as follows:
in: INTEGER*4 cType
The compression type. The types of compressions are described in Section 4.10.

in: INTEGER*4 c_parms(*)

The compression parameters. The compression parameters are described in Section 4.10.

241

The only required preselected object/state is the current CDF.

<PUT_,CDF_ENCODING_>

Respecifies the data encoding of the current CDF. A CDF's data encoding may not be changed after any variable
values (including the pad value) or attribute entries have been written. Required arguments are as follows:

in: INTEGER*4 encoding

New data encoding. Specify one of the encodings described in Section 4.6.
The only required preselected object/state is the current CDF.

<PUT_,CDF_FORMAT_>

Respecifies the format of the current CDF. A CDF’s format may not be changed after any variables have been
created. Required arguments are as follows:

in: INTEGER*4 format

New CDF format. Specify one of the formats described in Section 4.4.
The only required preselected object/state is the current CDF.

<PUT_,CDF_MAJORITY >

Respecifies the variable majority of the current CDF. A CDF's variable majority may not be changed after any
variable values have been written. Required arguments are as follows:

in: INTEGER*4 majority
New variable majority. Specify one of the majorities described in Section 4.8.
The only required preselected object/state is the current CDF.

<PUT_,gENTRY_DATA_>

Writes a gEntry to the current attribute at the current gEntry number (in the current CDF). An existing gEntry
may be overwritten with a new gEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: INTEGER*4 data_type

Data type of the gEntry. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in

the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: <type> value

Value. <type> is dependent on the data type of the gEnrty. The value is written to the CDF from
value.

WARNING: If the gEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the gEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.

242

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_,gENTRY_DATASPEC_>
Modifies the data specification (data type and number of elements) of the gEntry at the current gEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:
in: INTEGER*4 data_type
New data type of the gEntry. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.

<PUT_,rENTRY_DATA >
Writes an rEntry to the current attribute at the current rEntry number (in the current CDF). An existing rEntry
may be overwritten with a new rEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:
in: INTEGER*4 data_type
Data type of the rEntry. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: <type> value

Value. <type> is dependent on the data type of the rEnrty. The value is written to the CDF from
value.

WARNING: If the rEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the rEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,fENTRY_DATASPEC_>

Modifies the data specification (data type and number of elements) of the rEntry at the current rEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of

243

elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: INTEGER*4 data_type
New data type of the rEntry. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,rVAR_ALLOCATEBLOCK_>
Specifies a range of records to allocate for the current rVariable (in the current CDF). This operation is only
applicable to uncompressed rVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:
in: INTEGER*4 first_record
The first record number to allocate.
in: INTEGER*4 last_record
The last record number to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rIVAR_ALLOCATERECS_>
Specifies the number of records to allocate for the current rVariable (in the current CDF). The records are
allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed rVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.
Required arguments are as follows:
in: INTEGER*4 num_records
Number of records to allocate.
The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_BLOCKINGFACTOR_>"
Specifies the blocking factor for the current rVariable (in the current CDF). The Concepts chapter in the CDF

User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:
in: INTEGER*4 blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,r'VAR_COMPRESSION_>

> The item rVAR_BLOCKINGFACTOR was previously named r'VAR_EXTENDRECS .

244

Specifies the compression type/parameters for the current rVariable (in current CDF). Required arguments are
as follows:

in: INTEGER*4 cType
The compression type. The types of compressions are described in Section 4.10.
in: INTEGER*4 c_parms(*)
The compression parameters. The compression parameters are described in Section 4.10.
The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_DATA >
Writes one value to the current rVariable (in the current CDF). The value is written at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the rVariable. The value is written to the CDF from
value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<PUT_,rVAR_DATASPEC_>
Respecifies the data specification (data type and number of elements) of the current rVariable (in the current
CDF). An rVariable's data specification may not be changed If the new data specification is not equivalent to
the old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: INTEGER*4 data_type
New data type. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_DIMVARYS >

Respecifies the dimension variances of the current rVariable (in the current CDF). An rVariable's dimension

variances may not be changed if any values have been written (except for an explicit pad value - it may have

been written). For O-dimensional rVariables this operation is not applicable. Required arguments are as follows:

in: INTEGER*4 dim_varys(*)

245

New dimension variances. Each element of dim_varys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_HYPERDATA >
Writes one or more values to the current rVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

in: <type> buffer

Value. <type> is dependent on the data type of the rVariable. The values in buffer are written to the
CDF.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<PUT_,rVAR_INITIALRECS_>
Specifies the number of records to initially write to the current rVariable (in the current CDF). The records are
written beginning at record number O (zero). This may be specified only once per rVariable and before any
other records have been written to that rVVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: INTEGER*4 num_records
Number of records to write.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_NAME_>
Renames the current rVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:
in: CHARACTER var_name*(*)
New name of the rVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_PADVALUE_>
Specifies the pad value for the current rVariable (in the current CDF). An rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were
used). The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

246

in: <type> value

Pad value. <type> is dependent on the data type of the rVariable. The pad value is written to the
CDF from value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,IVAR_RECVARY >
Respecifies the record variance of the current rVariable (in the current CDF). An rVariable's record variance

may not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: INTEGER*4 rec_vary
New record variance. Specify one of the variances described in Section 4.9.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,IVAR_SEQDATA >
Writes one value to the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record

boundary if necessary). If the current sequential value is past the last record for the rVVariable, the rVariable is
extended as necessary. Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the rVariable. The value is written to the CDF from
value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are written.
<PUT_,rIVAR_SPARSEARRAYS >
Specifies the sparse arrays type/parameters for the current rVariable (in the current CDF). Required arguments
are as follows:
in: INTEGER*4 s _arrays_type
The sparse arrays type. The types of sparse arrays are described in Section 4.11.
in: INTEGER*4 a_arrays_parms(*)

The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.

The required preselected objects/states are the current CDF and its current rVariable.

247

<PUT_,r'VAR_SPARSERECORDS_>

Specifies the sparse records type for the current rVariable (in the current CDF). Required arguments are as
follows:

in: INTEGER*4 s_records_type

The sparse records type. The types of sparse records are described in Section 4.11.
The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,r'VARs_RECDATA >

Writes full-physical records to one or more rVariables (in the current CDF). The full-physical records are
written at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: INTEGER*4 num_vars

The number of rVariables to which to write. This must be at least one (1).

in: INTEGER*4 var_nums(*)

The rVariables to which to write. This array, whose size is determined by the value of num_vars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: <type> buffer

The buffer of full-physical rVariable records to be written. <type> must be a Fortran variable that will
be passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address
at which to get the full-physical records being written.) The order of the full-physical rVariable
records in this buffer must agree with the rVariable numbers listed in varNums and this buffer must be
contiguous --- there can be no spacing between full-physical rVVariable records. Be careful if using
Fortran STRUCTURES to store multiple full-physical rVariable records. Fortran compilers on some
operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. *®

<PUT_zENTRY_DATA >

Writes a zEntry to the current attribute at the current zEntry number (in the current CDF). An existing zEntry
may be overwritten with a new zEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: INTEGER*4 data_type

Data type of the zEntry. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in

the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

16 A Standard Interface at Section 5.17 provides the same functionality.

248

in: <type> value

The value(s). <type> depends on the data type of the zEntry. The value is written to the CDF from
value.

249

250

251

WARNING: If the zEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the zEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,zZENTRY_DATASPEC_>
Modifies the data specification (data type and number of elements) of the zEntry at the current zEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:
in: INTEGER*4 data_type
New data type of the zEntry. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,zZVAR_ALLOCATEBLOCK_ >
Specifies a range of records to allocate for the current zVariable (in the current CDF). This operation is only
applicable to uncompressed zVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:
in: INTEGER*4 first_record
The first record number to allocate.
in: INTEGER*4 last_record
The last record number to allocate.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_ALLOCATERECS_>
Specifies the number of records to allocate for the current zVariable (in the current CDF). The records are
allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed zVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.
Required arguments are as follows:
in: INTEGER*4 num_records
Number of records to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_BLOCKINGFACTOR_>"

" The item zZVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

252

Specifies the blocking factor for the current zVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:
in: INTEGER*4 blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_COMPRESSION_>
Specifies the compression type/parameters for the current zVariable (in current CDF). Required arguments are
as follows:
in: INTEGER*4 cType
The compression type. The types of compressions are described in Section 4.10.
in: INTEGER*4 c_parms(*)
The compression parameters. The compression parameters are described in Section 4.10.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVAR DATA >
Writes one value to the current zVariable (in the current CDF). The value is written at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the zVariable. The value is written to the CDF from
value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<PUT_,zZVAR_DATASPEC >
Respecifies the data specification (data type and number of elements) of the current zVariable (in the current
CDF). A zVariable's data specification may not be changed If the new data specification is not equivalent to the
old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: INTEGER*4 data_type
New data type. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists

253

at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_DIMVARYS_>
Respecifies the dimension variances of the current zVariable (in the current CDF). A zVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional zVariables this operation is not applicable. Required arguments are as
follows:

in: INTEGER*4 dim_varys(*)

New dimension variances. Each element of dim_varys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_INITIALRECS >
Specifies the number of records to initially write to the current zVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per zVariable and before any
other records have been written to that zVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: INTEGER*4 num_records
Number of records to write.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_HYPERDATA >
Writes one or more values to the current zVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

in: <type> buffer

Value. <type> is dependent on the data type of the zVariable. The value is written to the CDF from
value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zZVariable.

<PUT_,zVAR_NAME_>
Renames the current zVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: CHARACTER var_name*(*)

254

New name of the zVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_PADVALUE_>
Specifies the pad value for the current zVariable (in the current CDF). A zVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

in: <type> value

Pad value. <type> is dependent on the data type of the zVariable. The value is written to the CDF
from value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_RECVARY_>
Respecifies the record variance of the current zVariable (in the current CDF). A zVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: INTEGER*4 rec_vary
New record variance. Specify one of the variances described in Section 4.9.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_SEQDATA >
Writes one value to the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the zVariable, the zZVariable is
extended as necessary. Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the zVariable. The value is written to the CDF from
value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are written.

<PUT_,zVAR_SPARSEARRAYS_>

Specifies the sparse arrays type/parameters for the current zVariable (in the current CDF). Required arguments
are as follows:

255

in: INTEGER*4 s_arrays_type
The sparse arrays type. The types of sparse arrays are described in Section 4.11.
in: INTEGER*4 a_arrays_parms(*)
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_SPARSERECORDS_>

Specifies the sparse records type for the current zVariable (in the current CDF). Required arguments are as
follows:

in: INTEGER*4 s_records_type

The sparse records type. The types of sparse records are described in Section 4.11.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVARs_RECDATA_>
Writes full-physical records to one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is written at the current record number for that zVariable. (The record numbers do not have

to be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: INTEGER*4 num_vars

The number of zVariables to which to write. This must be at least one (1).

in: INTEGER*4 var_nums(*)

The zVariables to which to write. This array, whose size is determined by the value of hum_vars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: <type> buffer

The buffer of full-physical zVVariable records to be written. <type> must be a Fortran variable that will
be passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address
at which to get the full-physical records being written.) The order of the full-physical zVariable
records in this buffer must agree with the zVariable numbers listed in varNums and this buffer must be
contiguous --- there can be no spacing between full-physical zVariable records. Be careful if using
Fortran STRUCTURES to store multiple full-physical zVariable records. Fortran compilers on some
operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT_,zZVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zZVAR_RECNUMBER_>). *®

<SELECT_,ATTR_>
Explicitly selects the current attribute (in the current CDF) by number. Required arguments are as follows:

18 A Standard Interface at Section 5.18 provides the same functionality.

256

in: INTEGER*4 attr_num
Attribute number.
The only required preselected object/state is the current CDF.
<SELECT_,ATTR_NAME_>
Explicitly selects the current attribute (in the current CDF) by name. NOTE: Selecting the current attribute by
number (see <SELECT ,ATTR_>) is more e_cient. Required arguments are as follows:
in: CHARACTER attr_name*(*)
Attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, attr_name MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_>
Explicitly selects the current CDF. Required arguments are as follows:

in: INTEGER*4 id

Identifier of the CDF. This identifier must have been initialized by a successful <CREATE_,CDF_>
or <OPEN ,CDF_> operation.

There are no required preselected objects/states.
<SELECT_,CDF_CACHESIZE_>
Selects the number of cache buffers to be used for the dotCDF file (for the current CDF). The Concepts chapter
in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:
in: INTEGER*4 num_buffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_DECODING_>
Selects a decoding (for the current CDF). Required arguments are as follows:

in: INTEGER*4 decoding
The decoding. Specify one of the decodings described in Section 4.7.
The only required preselected object/state is the current CDF.

<SELECT_,CDF_NEGtoPOSfp0_MODE_>
Selects a -0.0 to 0.0 mode (for the current CDF). Required arguments are as follows:

in: INTEGER*4 mode

The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 4.15.

257

The only required preselected object/state is the current CDF.

<SELECT_,CDF_READONLY_MODE_>
Selects a read-only mode (for the current CDF). Required arguments are as follows:

in: INTEGER*4 mode
The read-only mode. Specify one of the read-only modes described in Section 4.13.
The only required preselected object/state is the current CDF.
<SELECT_,CDF_SCRATCHDIR_>
Selects a directory to be used for scratch files (by the CDF library) for the current CDF. The Concepts chapter
in the CDF User’s Guide describes how the CDF library uses scratch files. This scratch directory will override
the directory specified by the the CDF$TMP logical name (on VMS systems) or CDF TMP environment
variable (on UNIX and MS-DOS systems). Required arguments are as follows:

in: CHARACTER scratch_dir*(*)

The directory to be used for scratch files. The length of this directory specification is limited only by
the operating system being used.

UNIX: For the proper operation of CDF_lib, scratch_dir MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_STATUS_ >
Selects the current status code. Required arguments are as follows:

in: INTEGER™*4 status
CDF status code.
There are no required preselected objects/states.

<SELECT_,CDF_zMODE_>
Selects a zMode (for the current CDF). Required arguments are as follows:

in: INTEGER*4 mode
The zMode. Specify one of the zModes described in Section 4.14.
The only required preselected object/state is the current CDF.
<SELECT_,COMPRESS_CACHESIZE_>

Selects the number of cache buffers to be used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

in: INTEGER*4 num_buffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

258

<SELECT_,gENTRY_>
Selects the current gEntry number for all gAttributes in the current CDF. Required arguments are as follows:

in: INTEGER*4 entry_num
gEntry number.
The only required preselected object/state is the current CDF.

<SELECT_,fENTRY_>
Selects the current rEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: INTEGER*4 entry_num
rEntry number.
The only required preselected object/state is the current CDF.
<SELECT_,rENTRY_NAME_>
Selects the current rEntry number for all vAttributes (in the current CDF) by rVariable name. The number of the
named rVariable becomes the current rEntry number. (The current rVariable is not changed.) NOTE: Selecting
the current rEntry by number (see <SELECT ,rENTRY_>) is more e_cient. Required arguments are as follows:
in: CHARACTER var_name*(*)
rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF _lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<SELECT ,rVAR >
Explicitly selects the current rVariable (in the current CDF) by humber. Required arguments are as follows:

in: INTEGER*4 var_num
rVVariable number.
The only required preselected object/state is the current CDF.
<SELECT_,rVAR_CACHESIZE_>
Selects the number of cache buffers to be used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 num_buffers
The number of cache buffers to be used.
The required preselected objects/states are the current CDF and its current rVariable.
<SELECT_,rVAR_NAME_>

Explicitly selects the current rVVariable (in the current CDF) by name. NOTE: Selecting the current rVariable
by number (see <SELECT _,rVAR_>) is more e_cient. Required arguments are as follows:

259

in: CHARACTER var_name*(*)
rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF _lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.
<SELECT_,rVAR_RESERVEPERCENT_>
Selects the reserve percentage to be used for the current rVVariable (in the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<SELECT_,rVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current rVariable (in the current CDF). Note that
a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
in: INTEGER*4 rec_num
Record number.

in: INTEGER*4 indices(*)

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<SELECT_,rVARs_CACHESIZE >
Selects the number of cache buffers to be used for all of the rVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 num_buffers
The number of cache buffers to be used.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs_DIMCOUNTS >
Selects the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: INTEGER*4 counts(*)

Dimension counts. Each element of counts specifies the corresponding dimension count.

The only required preselected object/state is the current CDF.

260

<SELECT ,rVARs_DIMINDICES >
Selects the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: INTEGER*4 indices(*)
Dimension indices. Each element of indices specifies the corresponding dimension index.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs_DIMINTERVALS >
Selects the current dimension intervals for all rVVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: INTEGER*4 intervals(*)
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECCOUNT_>
Selects the current record count for all rVariables in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec_count
Record count.
The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECINTERVAL_>
Selects the current record interval for all rVariables in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec_interval
Record interval.
The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECNUMBER_>
Selects the current record number for all rVariables in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec_num
Record number.
The only required preselected object/state is the current CDF.
<SELECT_,STAGE CACHESIZE_>
Selects the number of cache buffers to be used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

in: INTEGER*4 num_buffers

The number of cache buffers to be used.

261

The only required preselected object/state is the current CDF.

<SELECT_,zZENTRY_>
Selects the current zEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: INTEGER*4 entry_num
ZEntry number.
The only required preselected object/state is the current CDF.
<SELECT_,zZENTRY_NAME_>
Selects the current zEntry number for all vAttributes (in the current CDF) by zVariable name. The number of
the named zVariable becomes the current zEntry number. (The current zVariable is not changed.) NOTE:
Selecting the current zEntry by number (see <SELECT_,zZENTRY_>) is more e_cient. Required arguments are
as follows:
in: CHARACTER var_name*(*)
zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<SELECT_,zVAR >
Explicitly selects the current zVariable (in the current CDF) by number. Required arguments are as follows:

in: INTEGER*4 var_num
zVariable number.
The only required preselected object/state is the current CDF.
<SELECT_,zVAR_CACHESIZE_>
Selects the number of cache buffers to be used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 num_buffers
The number of cache buffers to be used.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVAR_DIMCOUNTS >
Selects the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
in: INTEGER*4 counts(*)

Dimension counts. Each element of counts specifies the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

262

<SELECT_,zVAR_DIMINDICES >
Selects the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
in: INTEGER*4 indices(*)
Dimension indices. Each element of indices specifies the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVAR_DIMINTERVALS >
Selects the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:
in: INTEGER*4 intervals(*)
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_NAME_>
Explicitly selects the current zVariable (in the current CDF) by name. NOTE: Selecting the current zVariable
by number (see <SELECT _,zZVAR_>) is more e_cient. Required arguments are as follows:
in: CHARACTER var_name*(*)
zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF _lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.
<SELECT ,zVAR_RECCOUNT >
Selects the current record count for the current zVariable in the current CDF. Required arguments are as
follows:
in: INTEGER*4 rec_count
Record count.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_RECINTERVAL_>
Selects the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:
in: INTEGER*4 rec_interval
Record interval.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_RECNUMBER_>

263

Selects the current record number for the current zVariable in the current CDF. Required arguments are as
follows:

in: INTEGER*4 rec_num
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_RESERVEPERCENT_>
Selects the reserve percentage to be used for the current zVariable (in the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
in: INTEGER*4 rec_num
Record number.

in: INTEGER*4 indices(*)

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVARs_CACHESIZE_>
Selects the number of cache buffers to be used for all of the zVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 num_buffers
The number of cache buffers to be used.
The only required preselected object/state is the current CDF.
<SELECT_,zVARs_RECNUMBER_>
Selects the current record number for each zVariable in the current CDF. This operation is provided to simplify
the selection of the current record numbers for the zVariables involved in a multiple variable access operation
(see the Concepts chapter in the CDF User’s Guide). Required arguments are as follows:
in: INTEGER*4 rec_num

Record number.

The only required preselected object/state is the current CDF.

264

7.7 More Examples

Several more examples of the use of CDF_lib follow. in each example it is assumed that the current CDF has already
been selected (either implicitly by creating/opening the CDF or explicitly with <SELECT_,CDF_>).

7.7.1 Creation

In this example an rVariable will be created with a pad value being specified; initial records will be written; and the
rVariable's blocking factor will be specified. Note that the pad value was specified before the initial records. This
results in the specified pad value being written. Had the pad value not been specified first, the initial records would
have been written with the default pad value. It is assumed that the current CDF has already been selected.

INCLUDE “<path>cdf.inc"

INTEGER*4 status
INTEGER*4 dim_varys(2)
INTEGER*4 var_num
REAL*4 pad_value

Status returned from CDF library.
Dimension variances.

rVariable number.

Pad value.

DATA pad_value/-999.9/

dim_varys(1) VARY

dim_varys(2) VARY

status = CDF_lib (CREATE , rVAR_, "HUMIDITY", CDF_REAL4, 1, VARY,
1 dim_varys, var_num,

2 PUT_, rVAR_PADVALUE_, pad_value,

3 rVAR_INITIALRECS , 500,

4 rVAR_BLOCKINGFACTOR_, 50,
5
|

NULL_, status)
F (status _NE. CDF_OK) CALL UserStatusHandler (status)

7.7.2 zVariable Creation (Character Data Type)

In this example a zVariable with a character data type will be created with a pad value being specified. It is assumed
that the current CDF has already been selected.

INCLUDE *<path>CDF. INC"

265

INTEGER*4 status
INTEGER*4 dim_varys(1)
INTEGER*4 var_num
INTEGER*4 num_dims
INTEGER*4 dim_sizes(1)
INTEGER*4 num_elems
CHARACTER*10 pad_value

Status returned from CDF library.
Dimension variances.

zVariable number.

Number of dimension.

Dimension sizes.

Number of elements (of the data type).
Pad value.

DATA pad_value/"******xxxxs/
0 num_dims/1/,

1 dim_sizes/20/,

2 num_elems/10/

dim_varys(1l) = VARY
status = CDF_lib (CREATE , zVAR , "Station”, CDF_CHAR, num_elems, num_dims,

1 dim_sizes, NOVARY, dim_varys, var_num,
2 PUT_, zVAR_PADVALUE_, pad_value,
3 NULL_, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

7.7.3 Hyper Read with Subsampling

In this example an rVariable will be subsampled in a CDF whose rVariables are 2-dimensional and have dimension
sizes [100,200]. The CDF is column major, and the data type of the rVVariable is CDF_UINT2. It is assumed that the

current CDF has already been selected.

INCLUDE *<path>CDF. INC"

INTEGER*4 status
INTEGER*2 values(50,100)
INTEGER*4 rec_count
INTEGER*4 rec_interval

Status returned from CDF library.
Buffer to receive values.

Record count, one record per hyper get.
Record interval, set to one to indicate
contiguous records (really meaningless
since record count iIs one).

Dimension indices, start each read

at 1,1 of the array.

INTEGER*4 indices(2)

INTEGER*4 counts(2)
each dimension will be read.

Dimension intervals, every other value
along each dimension will be read.
Record number.

Maximum rVariable record in the

CDF - this was determined with a call
to CDF_inquire.

INTEGER*4 intervals(2)

INTEGER*4 rec_num
INTEGER*4 max_rec

DATA rec_count/1/, rec_interval/1/, indices/1,1/, counts/50,100/,
1 intervals/2,2/

266

Dimension counts, half of the values along

status = CDF_lib (SELECT_, rVAR_NAME , "BRIGHTNESS",

1 rVARs RECCOUNT_, rec_count,

2 rVARs_RECINTERVAL_, rec_interval,
3 rVARs DIMINDICES , indices,

4 rVARs_DIMCOUNTS_, counts,

5 rVARs_DIMINTERVALS , intervals,

6 NULL_, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

DO rec_num = 1, max_rec
status = CDF_lib (SELECT_, rVARs_RECNUMBER_, rec_num,
1 GET_, rVAR_HYPERDATA , values,
2 NULL_, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

I process values

END DO

7.7.4 Attribute Renaming

In this example the attribute named Tmp will be renamed to TMP. It is assumed that the current CDF has already been
selected.

INCLUDE “<path>CDF.INC"

INTEGER*4 status I Status returned from CDF library.

status = CDF_lib (SELECT_, ATTR_NAME_, "Tmp-,

1 PUT _, ATTR_NAME, "TMP*",

2 NULL_, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

7.7.5 Sequential Access

In this example the values for a zVariable will be averaged. The values will be read using the sequential access method
(see the Concepts chapter in the CDF User's Guide). Each value in each record will be read and averaged. It is
assumed that the data type of the zVariable has been determined to be CDF_REALA4. It is assumed that the current
CDF has already been selected.

267

INCLUDE “<path>CDF.INC"

INTEGER*4 status
INTEGER*4 var_num
INTEGER*4 rec_num
INTEGER*4 indices(2)
REAL*4 value
REAL*8 sum
INTEGER*4 count
REAL*4 ave

Status returned from CDF library.
zVariable number.

Record number, start at first record.
Dimension indices.

Value read.

Sum of all values.

Number of values.

Average value.

DATA indices/1,1/, sum/0.0/, count/0/, rec_num/1/

status = CDF_lib (GET_, zVAR_NUMBER_, "FLUX®, var_num,
1 NULL_, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

status = CDF_lib (SELECT_, zVAR_, var_num,

1 zVAR_SEQPOS , rec _num, indices,
2 GET_, zVAR_SEQDATA , value,
3 NULL_, status)

DO WHILE (status .GE. CDF_O0OK)
sum = sum + value
count = count + 1
status = CDF_lib (GET_, zVAR_SEQDATA , value,
1 NULL_, status)
END DO

IF (status _NE. END_OF VAR) CALL UserStatusHandler (status)

ave = sum / count

7.7.6 Attribute rEntry Writes

In this example a set of attribute rEntries for a particular rVariable will be written. It is assumed that the current CDF
has already been selected.

INCLUDE “<path>CDF.INC"

INTEGER*4 status I Status returned from CDF library.
REAL*4 scale(2) I Scale, minimum/maximum.

268

DATA scale/-90.0,90.0/

status = CDF_lib (SELECT_, rENTRY_NAME_, “LATITUDE",

1 ATTR_NAME_, “FIELDNAM®,

2 PUT_, rENTRY_DATA_, CDF_CHAR, 20, "Latitude-®,

3 SELECT_, ATTR_NAME_, "SCALE",

4 PUT_, rENTRY_DATA , CDF_REAL4, 2, scale,

5 SELECT_, ATTR_NAME_, “UNITS",

6 PUT_, rENTRY_DATA , CDF_CHAR, 20, "Degrees north",
7 NULL_, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

7.7.7 Multiple zVariable Write

In this example full-physical records will be written to the zVariables in a CDF. Note the ordering of the zVariables
(see the Concepts chapter in the CDF User's Guide). It is assumed that the current CDF has already been selected.

INCLUDE =<path>CDF.INC"

Status returned from CDF library.
“Time" value.

“vectorA® values.

“vectorB* values.

Record number.

Buffer of full-physical records.
Variable numbers.

INTEGER*4 status
INTEGER*2 time

BYTE vector_a(3)
REAL*8 vector_b(5)
INTEGER*4 rec_number
BYTE buffer(45)
INTEGER*4 var_numbers(3)

EQUIVALENCE (vector_b, buffer(l))
EQUIVALENCE (time, buffer(4l))
EQUIVALENCE (vector_a, buffer(43))

status = CDF_lib (GET_, zVAR_NUMBER_, "vectorB", var_numbers(l),

1 zVAR_NUMBER _, "time", var_numbers(2),
2 zVAR_NUMBER_, "vectorAT", var_numbers(3),
3 NULL_, status);
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

bo rec_number = 1, 100
/* read values from input file */
status = CDF_lib (SELECT_, zVARs RECNUMBER , rec_number,

1 PUT_, zVARs_ RECDATA , 3L, var_numbers, buffer,
2 NULL_, status);

269

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
END DO

270

Chapter 8

8 Interpreting CDF Status Codes

Most CDF functions return a status code of type INTEGER*4. The symbolic names for these codes are defined in
cdf.inc and should be used in your applications rather than using the true numeric values. Appendix A explains each
status code. When the status code returned from a CDF function is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These are error
codes.

The following example shows how you could check the status code returned from CDF functions.

INTEGER*4 status

CALL CDF_function (..., status) I any CDF function returning status
IF (status _NE. CDF_OK) THEN
CALL UserStatusHandler (status, ...)

END IF

In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

INCLUDE “<path>cdf.inc"

SUBROUTINE UserStatusHandler (status)
INTEGER*4 status

271

CHARACTER message*(CDF_STATUSTEXT_LEN)

IF (status .LT. CDF_WARN) THEN
WRITE (6,10)
10 FORMAT (* ","An error has occurred, halting...")
CALL CDF_error (status, message)
WRITE (6,11) message
11 FORMAT (" ",A)
STOP
ELSE
IF (status .LT. CDF_OK) THEN
WRITE (6,12)
12 FORMAT (* =,"Warning, function may not have completed as expected...")
CALL CDF_error (status, message)
WRITE (6,13) message
13 FORMAT (* ",A)
ELSE
IF (status .GT. CDF_OK) THEN
WRITE (6,14)
14 FORMAT (* ", "Function completed successfully, but be advised that...")
CALL CDF_error (status, message)
WRITE (6,15) message

15 FORMAT (" *,A)
END IF
END IF
END IF
RETURN
END

Explanations for all CDF status codes are available to your applications through the function CDF_error. CDF_error
encodes in a text string an explanation of a given status code.

272

Chapter 9

9 EPOCH Utility Routines

Several subroutines exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH16 values.
These functions may be called by applications using the CDF_EPOCH and CDF_EPOCH16 data types and are
included in the CDF library. Function prototypes for these functions may be found in the include file cdf.h. The
Concepts chapter in the CDF User's Guide describes EPOCH values.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store time values referenced from a particular epoch.
For CDF that epoch values for CDF_EPOCH and CDF_EPOCH16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

9.1 compute EPOCH

compute_EPOCH calculates a CDF_EPOCH value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE compute_EPOCH (

INTEGER*4 year,
INTEGER*4 month,
INTEGER*4 day,
INTEGER*4 hour,
INTEGER*4 minute,
INTEGER*4 second,
INTEGER*4 msec,
REAL*8 epoch)

lin -- Year (AD, e.g., 1994).

lin -- Month (1-12).

lin -- Day (1-31).

lin -- Hour (0-23).

lin -- Minute (0-59).

lin -- Second (0-59).

lin -- Millisecond (0-999).

! out-- CDF_EPOCH value

NOTE: There are two variations on how compute EPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000.

273

9.2 EPOCH_breakdown

EPOCH_breakdown decomposes a CDF_EPOCH value into the individual components.
SUBROUTINE EPOCH_breakdown (

REAL*8 epoch, 1in -- The CDF_EPOCH value.
INTEGER*4 vyear, I out -- Year (AD, e.g., 1994).
INTEGER*4 month, I out -- Month (1-12).
INTEGER*4 day, I out -- Day (1-31).
INTEGER*4 hour, ! out -- Hour (0-23).
INTEGER*4 minute, I out -- Minute (0-59).
INTEGER*4 second, I out -- Second (0-59).
INTEGER*4 msec) ! out -- Millisecond (0-999).

9.3 encode EPOCH

encode_EPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

SUBROUTINE encode_EPOCH (

REAL*8 epoch; Iin -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH_STRING_LEN)) ! out -- The standard date/time character string.

EPOCH_STRING_LEN is defined in cdf.inc.

9.4 encode EPOCH1

encode_EPOCH1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

SUBROUTINE encode_ EPOCH1(

REAL*8 epoch; I'in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH1_STRING_LEN)) ! out -- The alternate date/time character string.

EPOCH1_STRING_LEN is defined in cdf.inc.

274

9.5 encode EPOCH2

encode_EPOCH?2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

SUBROUTINE encode_EPOCH2 (

REAL*8 epoch; I'in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH2_STRING_LEN)) ! out -- The alternate date/time character string.

EPOCH2_STRING_LEN is defined in cdf.inc.

9.6 encode EPOCHS3

encode_EPOCHS3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

SUBROUTINE encode_EPOCHS3 (

REAL*8 epoch; I'in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH3_STRING_LEN)) ! out -- The alternate date/time character string.

EPOCH3_STRING_LEN is defined in cdf.inc.

9.7 encode EPOCHXx

encode_EPOCHXx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

SUBROUTINE encode_EPOCHXx (

REAL*8 epoch; I'in -- The CDF_EPOCH value.
CHARACTER format*(EPOCHx_FORMAT_MAX) 1in -- The format string.
CHARACTER encoded*(EPOCHx_STRING_MAX)) ! out -- The custom date/time character string.

The format string consists of EPOCH components which are encoded and text which is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>

275

month Month ("Jan',"Feb',...,"Dec’) <month>

mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 9.3) would
be. ..

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.inc.

9.8 parse_ EPOCH

parse_EPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encode_ EPOCH function described in Section 9.3. If an illegalfield is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_EPOCH (

CHARACTER epString*(EPOCH_STRING_LEN), ! in -- The standard date/time character string.
REAL*8 epoch) ! out -- CDF_EPOCH value

EPOCH_STRING_LEN is defined in cdf.inc.

9.9 parse EPOCH1

parse_EPOCH1 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encode_ EPOCH1 function described in Section 9.4. If an illegalfield is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_ EPOCHL1 (

CHARACTER epString*(EPOCH1_STRING_LEN), I in -- The standard date/time character string.
REAL*8 epoch) ! out -- CDF_EPOCH value

276

EPOCH1_STRING_LEN is defined in cdf.inc.

9.10 parse EPOCH2

parse_ EPOCH2 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encode_ EPOCH2 function described in Section 9.5. If an illegalfield is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_ EPOCH2 (

CHARACTER epString*(EPOCH2_STRING_LEN), I in -- The standard date/time character string.
REAL*8 epoch) ! out -- CDF_EPOCH value

EPOCH2_STRING_LEN is defined in cdf.inc.

9.11 parse_ EPOCH3

parse_EPOCH3 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encode EPOCH3 function described in Section 9.6. If an illegalfield is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_ EPOCH3 (

CHARACTER epString*(EPOCH3_STRING_LEN), I in -- The standard date/time character string.
REAL*8 epoch) ! out -- CDF_EPOCH value

EPOCH3_STRING_LEN is defined in cdf.inc.

9.12 compute EPOCHI16

compute_ EPOCH16 calculates a CDF_EPOCH16 value given the individual components. If An illegal component is
detected, the value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE compute EPOCH16 (

INTEGER*4 year,

INTEGER*4 month,
INTEGER*4 day, lin -- Day (1-31).
INTEGER*4 hour, lin -- Hour (0-23).

lin -- Year (AD, e.g., 1994).
]
|
]
INTEGER*4 minute, lin -- Minute (0-59).
|
]
|
|

lin -- Month (1-12).

INTEGER*4 second, lin -- Second (0-59).

INTEGER*4 msec, lin -- Millisecond (0-999).
INTEGER*4 usec, lin -- Microsecond (0-999).
INTEGER*4 nsec, lin -- Nanosecond (0-999).

277

INTEGER*4 psec, lin -- Picosecond (0-999).
REAL*8 epoch(2)) ! out-- CDF_EPOCH16 value

9.13 EPOCH16 breakdown

EPOCH16_breakdown decomposes a CDF_EPOCH16 value into the individual components.
SUBROUTINE EPOCH_breakdown (

REAL*8 epoch(2),
INTEGER*4 year,
INTEGER*4 month,
INTEGER*4 day,
INTEGER*4 hour,
INTEGER*4 minute,
INTEGER*4 second,
INTEGER*4 msec,
INTEGER*4 usec,
INTEGER*4 nsec,
INTEGER*4 psec)

in -- The CDF_EPOCH16 value.
out -- Year (AD, e.g., 1994).
out -- Month (1-12).

out -- Day (1-31).

out -- Hour (0-23).

out -- Minute (0-59).

out -- Second (0-59).

out -- Millisecond (0-999).
out -- Microsecond (0-999).
out -- Nanosecond (0-999).
out -- Picosecond (0-999).

9.14 encode EPOCHI16

encode_ EPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the
string is dd-mmm-yyyy hh:mm:ss.ccc.uuu.nnn.ppp where dd is the day of the month (1-31), mmm is the month (Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-
59), ss is the second (0-59), ccc is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-
999), and ppp is the picosecond (0-999).

SUBROUTINE encode_EPOCH16 (

REAL*8 epoch(2), ! in -- The CDF_EPOCH16 value.
CHARACTER epString*(EPOCH16_STRING_LEN)) ! out-- The standard date/time string.

EPOCH16_STRING_LEN is defined in cdf.inc.

9.15 encode EPOCH16 1

encode_EPOCH16_1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttttttttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

SUBROUTINE encode_EPOCH16_1(

278

REAL*8 epoch(2), lin -- The CDF_EPOCH16 value.
CHARACTER epString*(EPOCH16_1_STRING_LEN)) I out -- The date/time string.

EPOCH16_1_STRING_LEN is defined in cdf.inc.

9.16 encode EPOCH16 2

encode_ EPOCH16_2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

SUBROUTINE encode EPOCH16 2 (

REAL*8 epoch(2), I'in -- The CDF_EPOCH16 value.
CHARACTER epString*(EPOCH16_2_STRING_LEN)) I out -- The date/time string.

EPOCH16_2_STRING_LEN is defined in cdf.inc.

9.17 encode EPOCH16 3

encode_ EPOCH16_3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.ccc.uuu.nnn.pppZ where yyyy is the year, mo is the month (1-12), dd is the day of the
month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), ccc is the millisecond (0-999),
uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

SUBROUTINE encode_EPOCH16_3 (

REAL*8 epoch(2), I in -- The CDF_EPOCH16 value.
CHARACTER epString*(EPOCH16_3_STRING_LEN)) I out -- The date/time string.

EPOCH16 3 STRING_LEN is defined in cdf.inc.

9.18 encode EPOCH16 x

encode_ EPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

SUBROUTINE encode EPOCH16_x (

REAL*8 epoch(2); !in -- The CDF_EPOCH16 value.
CHARACTER format*(EPOCHx_FORMAT_MAX) !in -- The format string.
CHARACTER encoded*(EPOCHx_STRING_MAX)) ! out -- The custom date/time character string.

279

The format string consists of EPOCH components which are encoded and text which is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows.

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (‘Jan', Feb',...,'Dec’) <month>
mm Month (1,2,...,12) <mm.0>

year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msec Millisecond (000-999) <msec.3>
usec Microsecond (000-999) <usec.3>
nsec Nanosecond (000-999) <nsec.3>
psec Picosecond (000-999) <psec.3>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH16 date/time character string (see Section 9.14)
would be. ..

<dom.02>-<month>-<year> <hour>:<min>;<sec>.<msec>.<usec>.<nsec>.<psec>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.inc.

9.19 parse EPOCH16

parse_ EPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encode_ EPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_ EPOCH16 (

CHARACTER epString*(EPOCH16_STRING_LEN), I in -- The date/time string.
REAL*8 epoch(2)) ! out -- CDF_EPOCH16 value

EPOCH16_STRING_LEN is defined in cdf.inc.

280

9.20 parse EPOCH16 1

parse_EPOCH16_1 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encode_EPOCH16_1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_EPOCH16_1 (

CHARACTER epString*(EPOCH16_1 STRING_LEN), I in -- The date/time string.
REAL*8 epoch(2)) ! out-- CDF_EPOCH16 value

EPOCH16_1 STRING_LEN is defined in cdf.inc.

9.21 parse EPOCH16 2

parse_EPOCH16_2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encode_ EPOCH16_2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_EPOCH16_2 (

CHARACTER epString*(EPOCH16_2 STRING_LEN), I in -- The date/time string.
REAL*8 epoch(2)) ! out-- CDF_EPOCH16 value

EPOCH16 2 STRING_LEN is defined in cdf.inc.

9.22 parse EPOCH16 3

parse_EPOCH16_3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encode_ EPOCH16_3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_EPOCH16_3 (

CHARACTER epString*(EPOCH16_3 STRING_LEN), I in -- The date/time string.
REAL*8 epoch(2)) ! out-- CDF_EPOCH16 value

EPOCH16_3 STRING_LEN is defined in cdf.inc.

281

Appendix A

A.l Introduction

A status code is returned from most CDF functions. The cdf.inc (for C) and CDF.INC (for Fortran) include files
contain the numerical values (constants) for each of the status codes (and for any other constants referred to in the
explanations). The CDF library Standard Interface functions CDFerror (for C) and CDF_error (for Fortran) can be
used within a program to inquire the explanation text for a given status code. The Internal Interface can also be used to
inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR_NAME_TRUNC Attribute name truncated to CDF_ATTR_NAME_LEN256

characters. The attribute was created but with a truncated name.
[Warning]

282

BAD_ALLOCATE_RECS

BAD_ARGUMENT

BAD_ATTR_NAME

BAD_ATTR_NUM

BAD_BLOCKING_FACTOR!

BAD_CACHESIZE

BAD_CDF_EXTENSION

BAD_CDF_ID

BAD_CDF_NAME

BAD_CDFSTATUS

BAD_COMPRESSION_PARM

BAD_DATA_TYPE

BAD_DECODING

BAD_DIM_COUNT

BAD_DIM_INDEX

An illegal number of records to allocate for a variable was
specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

lllegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
which has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in cdf.inc for C applications and in cdf.inc
for Fortran applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

! The status code BAD_BLOCKING_FACTOR was previously named BAD_EXTEND_RECS.

283

BAD_DIM_INTERVAL

BAD_DIM_SIZE

BAD_ENCODING

BAD_ENTRY_NUM

BAD_FNC_OR_ITEM

BAD_FORMAT

BAD_INITIAL_RECS

BAD_MAIJORITY

BAD_MALLOC

BAD_NEGtoPOSfp0_MODE

BAD_NUM_DIMS

BAD_NUM_ELEMS

BAD_NUM_VARS

BAD_READONLY_MODE

BAD_REC_COUNT

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

Unknown data encoding specified. The CDF encodings are
defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL_ is specified as the last
operation. [Error]

Unknown format specified. The CDF formats are defined in
cdf.inc for C applications and in cdf.inc for Fortran applications.
[Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. @ The CDF variable
majorities are defined in cdf.inc for C applications and in cdf.inc
for Fortran applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_MAX_DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

Illegal number of variables in a record access operation. [Error]
Illegal read-only mode specified. The CDF read-only modes are
defined in cdf.inc for C applications and in cdf.inc for Fortran

applications. [Error]

Illegal record count specified. A record count must be at least
one (1). [Error]

284

BAD_REC_INTERVAL

BAD_REC_NUM

BAD_SCOPE

BAD_SCRATCH_DIR

BAD_SPARSEARRAYS_PARM

BAD_VAR_NAME

BAD_VAR_NUM

BAD_zMODE

CANNOT_ALLOCATE_RECORDS

CANNOT_CHANGE

lllegal record interval specified. A record interval must be at
least one (1). [Error]

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

An illegal scratch directory was specified. The scratch directory
must be writeable and accessable (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

lllegal variable number specified. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

Illegal zMode specified. The CDF zModes are defined in cdf.inc
for C applications and in cdf.inc for FortrAn applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

2. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

w

. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value

(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

285

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF_CLOSE_ERROR

CDF_CREATE_ERROR

CDF_DELETE_ERROR

CDF_EXISTS

CDF_INTERNAL_ERROR

CDF_NAME_TRUNC

CDF_OK

CDF OPEN_ERROR

7. Writing “initial" records to a variable after a value
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

9. Changing an attribute entry's data specification wherethe
new specification is not equivalent to the old
specification.

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs
if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Unsufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF_PATHNAME_LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.

Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege

286

CDF_READ_ERROR

CDF_WRITE_ERROR

COMPRESSION_ERROR

CORRUPTED_V2_CDF

DECOMPRESSION_ERROR

DID_NOT_COMPRESS

EMPTY_COMPRESSED_CDF

END_OF VAR

FORCED_PARAMETER

IBM_PC_OVERFLOW

ILLEGAL_FOR_SCOPE

ILLEGAL_IN_zMODE

ILLEGAL_ON_V1 CDF

MULTI_FILE_FORMAT

exists to open it. Also check that an open file quota has not
already been reached. [Error]

Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

An error occured while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

An error occured while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm choosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program which was creating/modifying the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*.
[Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

The attempted operation is illegal while in zMode. Most
operations involving rVariables or rEntries will be illegal.
[Error]

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire

287

NA_FOR_VARIABLE

NEGATIVE_FP_ZERO

NO_ATTR_SELECTED

NO_CDF_SELECTED

NO_DELETE_ACCESS

NO_ENTRY_SELECTED

NO_MORE_ACCESS

NO_PADVALUE_SPECIFIED

NO_STATUS SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

NO_VARS_IN_CDF

NO_WRITE_ACCESS

indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that

the CDF file(s) have the proper file system privileges and
ownership. [Error]

288

NOT_A_CDF

PRECEEDING_RECORDS_ALLOCATED

READ_ONLY_DISTRIBUTION

READ_ONLY_MODE

SCRATCH_CREATE_ERROR

SCRATCH_DELETE_ERROR

SCRATCH_READ_ERROR

SCRATCH_WRITE_ERROR

SINGLE_FILE_FORMAT

SOME_ALREADY_ALLOCATED

TOO_MANY_PARMS

TOO_MANY_VARS

UNKNOWN_COMPRESSION

UNKNOWN_SPARSENESS

UNSUPPORTED_OPERATION
VAR_ALREADY_CLOSED

VAR_CLOSE_ERROR

Named CDF is corrupted or not actually a CDF. This can also
occur if an older CDF distribution is being used to read a CDF
created by a more recent CDF distribution. Contact CDF User
Support if you are sure that the specified file is a CDF that should
be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write
access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]
The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

The attempted operation is not supported at this time. [Error]
The specified variable is already closed. [Informational]
Error detected while trying to close variable file. Check that

sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

289

VAR_CREATE_ERROR

VAR_DELETE_ERROR

VAR_EXISTS

VAR_NAME_TRUNC

VAR_OPEN_ERROR

VAR_READ_ERROR

VAR_WRITE_ERROR

VIRTUAL_RECORD_DATA

An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

Variable name truncated to CDF_VAR_NAME_LEN256
characters. The variable was created but with a truncated name.
[Warning]

An error occurred while opening variable file. Check that
suffient privilege exists to open the variable file. Also make sure
that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

290

Appendix B

B.1 Standard Interface (original)

SUBROUTINE CDF _attr_create (id, attr_name, attr_scope, attr_num, status)

INTEGER*4 id lin
CHARACTER attr_name*(*) lin
INTEGER*4 attr_scope lin
INTEGER*4 attr_num I out
INTEGER*4 status ! out
SUBROUTINE CDF _attr_entry _inquire (id, attr_num, entry_num, data_type, num_elements,
1 status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type I out
INTEGER*4 num_elements I out
INTEGER*4 status ! out
SUBROUTINE CDF _attr_get (id, attr_num, entry_num, value, status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
<type> value out
INTEGER*4 status Iout
SUBROUTINE CDF _attr_inquire (id, attr_num, attr_name, attr_scope, max_entry, status)
INTEGER*4 id lin
INTEGER*4 attr_num lin
CHARACTER attr_name*(*) ! out
INTEGER*4 attr_scope I out
INTEGER*4 max_entry I out
INTEGER*4 status ! out
INTEGER*4 FUNCTION CDF_attr_num (id, attr_name)

INTEGER*4 id lin
CHARACTER attr_name*(*) lin
SUBROUTINE CDF _attr_put (id, attr_num, entry_num, data_type, num_elements, value,

1

INTEGER*4 id lin
INTEGER*4 attr_num lin

291

INTEGER*4 entry_num lin
INTEGER*4 data_type lin
INTEGER*4 num_elements lin
<type> value lin
INTEGER*4 status ! out
SUBROUTINE CDF _attr_rename (id, attr_num, attr_name, status)

INTEGER*4 id in

!
INTEGER*4 attr_num lin

|

|

CHARACTER attr_name*(*) in
INTEGER*4 status out
SUBROUTINE CDF _close (id, status)

INTEGER*4 id lin
INTEGER*4 status I out

SUBROUTINE CDF_create (CDF_name, num_dims, dim_sizes, encoding, majority, id, status)
CHARACTER CDF_name*(*) lin

INTEGER*4 num_dims in
INTEGER*4 dim_sizes(*) in
INTEGER*4 encoding in

|

|

1
INTEGER*4 majority lin

]

]

INTEGER*4 id out
INTEGER*4 status I out
SUBROUTINE CDF_delete (id, status)

INTEGER*4 id lin
INTEGER*4 status ! out
SUBROUTINE CDF _doc (id, version, release, text, status)

INTEGER*4 id in
INTEGER*4 version out

]

1
INTEGER*4 release ! out

]

]

CHARACTER text*(CDF_DOCUMENT_LEN) out
INTEGER*4 status out
SUBROUTINE CDF _error (status, message, status)

INTEGER*4 status lin
CHARACTER message*(CDF_STATUSTEXT_LEN) ! out
INTEGER*4 status ! out
SUBROUTINE CDF_getrvarsrecorddata (id, num_var, var_nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var lin
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num lin
<type> buffer Iout
INTEGER*4 status ! out
SUBROUTINE CDF_getzvarsrecorddata (id, num_var, var_nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var lin
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num lin

292

<type> buffer ! out
INTEGER*4 status I out

SUBROUTINE CDF _inquire (id, num_dims, dim_sizes, encoding, majority, max_rec,
num_vars, num_attrs, status)

INTEGER*4 id in

INTEGER*4 num_dims out
INTEGER*4 dim_sizes(CDF_MAX_DIMS) out
INTEGER*4 encoding out

|
]
]
!
INTEGER*4 majority out
|
]
]
]

INTEGER*4 max_rec out
INTEGER*4 num_vars out
INTEGER*4 num_attrs out
INTEGER*4 status out
SUBROUTINE CDF_open (CDF_name, id, status)

CHARACTER CDF_name*(*) lin
INTEGER*4 id ! out
INTEGER*4 status ! out
SUBROUTINE CDF_putrvarsrecorddata (id, num_var, var_nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var lin
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num lin
<type> buffer lin
INTEGER*4 status ! out
SUBROUTINE CDF_putzvarsrecorddata (id, num_var, var_nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var lin
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num lin
<type> buffer lin
INTEGER*4 status ! out
SUBROUTINE CDF _var_close (id, var_num, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 status ! out
SUBROUTINE CDF var_create (id, var_name, data_type, num_elements, rec_variances,

1 dim_variances, var_num, status)

INTEGER*4 id lin
CHARACTER var_name*(*) lin
INTEGER*4 data_type lin
INTEGER*4 num_elements lin
INTEGER*4 rec_variance lin
INTEGER*4 dim_variances(*) lin
INTEGER*4 var_num I out
INTEGER*4 status ! out
SUBROUTINE CDF var_get (id, var_num, rec_num, indices, value, status)

INTEGER*4 id lin

293

INTEGER*4 var_num
INTEGER*4 rec_num
INTEGER*4 indices(*)
<type> value
INTEGER*4 status

SUBROUTINE CDF _var_hyper_get (id, var_num, rec_start, rec_count, rec_interval,
1 indices, counts, intervals, buffer, status)
INTEGER*4 id;

INTEGER*4 var_num

INTEGER*4 rec_start

INTEGER*4 rec_count

INTEGER*4 rec_interval

INTEGER*4 indices(*)

INTEGER*4 counts(*)

INTEGER*4 intervals(*)

<type> buffer

INTEGER*4 status

SUBROUTINE CDF _var_hyper_put (id, var_num, rec_start, rec_count, rec_interval,
1 indices, counts, intervals, buffer, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 rec_start

INTEGER*4 rec_count

INTEGER*4 rec_interval

INTEGER*4 indices(*)

INTEGER*4 counts(*)

INTEGER*4 intervals(*)

<type> buffer

INTEGER*4 status

SUBROUTINE CDF _var_inquire (id, var_num, var_name, data_type, num_elements,
1 rec_variance, dim_variances, status)
INTEGER*4 id

INTEGER*4 var_num

CHARACTER var_name*(CDF_VAR_NAME_LEN256)

INTEGER*4 data_type

INTEGER*4 num_elements

INTEGER*4 rec_variance

INTEGER*4 dim_variances(CDF_MAX_DIMS)

INTEGER*4 status

INTEGER*4 FUNCTION CDF_var_num (id, var_name)
INTEGER*4 id
CHARACTER var_name*(*)

SUBROUTINE CDF _var_put (id, var_num, rec_num, indices, value, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 rec_num

INTEGER*4 indices(*)

<type> value

INTEGER*4 status

SUBROUTINE CDF _var_rename (id, var_num, var_name, status)

294

=]

=]

out
out
out
out
out
out

! out

INTEGER*4 id lin

INTEGER*4 var_num lin
CHARACTER var_name*(*) lin
INTEGER*4 status Iout

295

B.2 Standard Interface (new)

SUBROUTINE CDF_close_cdf (id, status)
INTEGER*4 id
INTEGER*4 status

SUBROUTINE CDF _close_zvar (id, var_num, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 status

INTEGER*4 FUNCTION CDF_confirm_attr_existence (id, attr_name)
INTEGER*4 id
CHARACTER attr_name*(*)

INTEGER*4 FUNCTION CDF_confirm_gentry_existence (id, attr_num, entry_num)

INTEGER*4 id
INTEGER*4 attr_num
INTEGER*4 entry_num

INTEGER*4 FUNCTION CDF_confirm_rentry_existence (id, attr_num, entry_num)

INTEGER*4 id
INTEGER*4 attr_num
INTEGER*4 entry_num

INTEGER*4 FUNCTION CDF_confirm_zentry_existence (id, attr_num, entry_num)

INTEGER*4 id
INTEGER*4 attr_num
INTEGER*4 entry_num

INTEGER*4 FUNCTION CDF_confirm_zvar_existence (id, var_name)
INTEGER*4 id
CHARACTER var_name*(*)

INTEGER*4 FUNCTION CDF_confirm_zvar_padvalue_exist (id, var_num)

INTEGER*4 id
INTEGER*4 var_num

SUBROUTINE CDF _create_attr (id, attr_name, attr_scope, attr_num, status)

INTEGER*4 id
CHARACTER attr_name*(*)
INTEGER*4 attr_scope
INTEGER*4 attr_num
INTEGER*4 status

SUBROUTINE CDF _create_cdf (CDF_name, id, status)
CHARACTER CDF_name*(*)

INTEGER*4 id

INTEGER*4 status

297

55

5

SUBROUTINE CDF _create_zvar (id, var_name, data_type, num_elements, num_dims,

1
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_delete_attr (id, attr_num, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _delete_attr_gentry (id, attr_num, entry_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _delete_attr_rentry (id, attr_num, entry_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_delete_attr_zentry (id, attr_num, entry_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_delete_cdf (id, status)

INTEGER*4
INTEGER*4

SUBROUTINE CDF_delete_zvar (id, var_num, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _delete_zvar_recs (id, var_num, start_rec, end_rec, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

dim_sizes, rec_variances, dim_variances, var_num, status)

id

var_name*(*)
data_type
num_elements
num_dims
dim_sizes(*)
rec_variance
dim_variances(*)
var_num

status

id
attr_num
status

id
attr_num
entry_num
status

id
attr_num
entry_num
status

id
attr_num
entry_num
status

id
status

id
var_num
status

id
var_num
start_rec
end_rec
status

!
!
[
[
!
lin
!
!
[
[

5

I out

SUBROUTINE CDF_get_attr_gentry datatype (id, attr_num, entry_num, data_type, status)

INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num

lin
lin
lin

INTEGER*4 data_type
INTEGER*4 status

I out
I out

SUBROUTINE CDF_get_attr_gentry _numelems (id, attr_num, entry_num, num_elems, status)

INTEGER*4 id
INTEGER*4 attr_num
INTEGER*4 entry_num
INTEGER*4 num_elems
INTEGER*4 status

SUBROUTINE CDF _get attr_gentry (id, attr_num, entry_num, value, status)
INTEGER*4 id

INTEGER*4 attr_num

INTEGER*4 entry_num

<type> value

INTEGER*4 status

SUBROUTINE CDF_get_attr_max_gentry (id, attr_num, entry_num, status)
INTEGER*4 id

INTEGER*4 attr_num

INTEGER*4 entry_num

INTEGER*4 status

SUBROUTINE CDF_get_attr_max_rentry (id, attr_num, entry_num, status)
INTEGER*4 id

INTEGER*4 attr_num

INTEGER*4 entry_num

INTEGER*4 status

SUBROUTINE CDF_get_attr_max_zentry (id, attr_num, entry_num, status)
INTEGER*4 id

INTEGER*4 attr_num

INTEGER*4 entry_num

INTEGER*4 status

SUBROUTINE CDF_get_attr_name (id, attr_num, attr_name, status)
INTEGER*4 id

INTEGER*4 attr_num

CHARACTER attr_name*(*)

INTEGER*4 status

INTEGER*4 FUNCTION CDF _get attr_num (id, attr_name, status)
INTEGER*4 id

CHARACTER attr_name*(*)

INTEGER*4 status

SUBROUTINE CDF_get_attr_num_gentries (id, attr_num, entries, status)
INTEGER*4 id

INTEGER*4 attr_num

INTEGER*4 entries

INTEGER*4 status

SUBROUTINE CDF_get_attr_num_rentries (id, attr_num, entries, status)
INTEGER*4 id

INTEGER*4 attr_num

INTEGER*4 entries

299

lin
lin
lin

! out
! out

INTEGER*4

SUBROUTINE CDF_get_attr_num_zentries (id, attr_num, entries, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _get attr_rentry (id, attr_num, entry_num, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

status

id
attr_num
entries
status

id
attr_num
entry_num
value
status

I out

lin
lin
! out
! out

lin
lin
lin
I out
I out

SUBROUTINE CDF_get_attr_rentry_datatype (id, attr_num, entry_num, data_type, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
data_type
status

lin
lin
lin
! out
! out

SUBROUTINE CDF_get_attr_rentry_numelems (id, attr_num, entry_num, num_elems, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_get_attr_scope (id, attr_num, scope, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _get attr_zrentry (id, attr_num, entry_num, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

id

attr_num
entry_num
num_elems
status

id
attr_num
scope
status

id
attr_num
entry_num
value
status

lin
lin
lin
I out
! out

lin
lin
! out
I out

lin
lin
lin
! out
! out

SUBROUTINE CDF _get attr_zentry datatype (id, attr_num, entry_num, data_type, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
data_type
status

lin
lin
lin
I out
I out

SUBROUTINE CDF_get_attr_zentry _numelems (id, attr_num, entry_num, num_elems, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

attr_num
entry_num
num_elems
status

lin
lin
lin
! out
! out

SUBROUTINE CDF_get_cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers Iout
INTEGER*4 status I out
SUBROUTINE CDF_get_compress_cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers I out
INTEGER*4 status I out
SUBROUTINE CDF_get_compression (id, ctype, cparms, cpercent, status)

INTEGER*4 id lin
INTEGER*4 ctype ! out
INTEGER*4 cparms(*) ! out
INTEGER*4 cpercent ! out
INTEGER*4 status I out
SUBROUTINE CDF_get_compression_info (cdf_name, compress_type, compress_parms,

1 compres_size, decompress_size, status)
CHARACTER cdf_name*(*) lin
INTEGER*4 compress_type I out
INTEGER*4 compress_parms(*) Iout
INTEGER*8 compress_size ! out
INTEGER*8 decompress_size ! out
INTEGER*4 status Iout
SUBROUTINE CDF_get_copyright (id, copyright, status)

INTEGER*4 id lin
CHARACTER copyright*(*) out
INTEGER*4 status ! out
SUBROUTINE CDF_get datatype_size (data_type, size, status)

INTEGER*4 date_type lin
INTEGER*4 size ! out
INTEGER*4 status Iout
SUBROUTINE CDF_get_decoding (id, decoding, status)

INTEGER*4 id lin
INTEGER*4 decoding I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_encoding (id, encoding, status)

INTEGER*4 id lin
INTEGER*4 encoding I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_format (id, format, status)

INTEGER*4 id lin
INTEGER*4 format Iout
INTEGER*4 status I out
SUBROUTINE CDF_get_lib_copyright (copyright, status)

CHARACTER copyright*(*) out
INTEGER*4 status I out

SUBROUTINE CDF _get lib_version (version, release, increment, sub_increment, status)

301

INTEGER*4 version I out

INTEGER*4 release ! out
INTEGER*4 increment ! out
CHARACTER sub_increment*(*) out
INTEGER*4 status I out
SUBROUTINE CDF_get_majority (id, majority, status)

INTEGER*4 id lin
INTEGER*4 majority out
INTEGER*4 status ! out
SUBROUTINE CDF_get_name (id, name, status)

INTEGER*4 id lin
CHARACTER name*(*) ! out
INTEGER*4 status I out
SUBROUTINE CDF_get_negtoposfp0_mode (id, negtoposfp0, status)

INTEGER*4 id lin
INTEGER*4 negtoposfp0 out
INTEGER*4 status I out
SUBROUTINE CDF_get_num_attrs (id, num_attrs, status)

INTEGER*4 id lin
INTEGER*4 num_attrs Iout
INTEGER*4 status Iout
SUBROUTINE CDF_get_num_gattrs (id, num_attrs, status)

INTEGER*4 id lin
INTEGER*4 num_attrs I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_num_rvars (id, num_vars, status)

INTEGER*4 id lin
INTEGER*4 num_vars I out
INTEGER*4 status Iout
SUBROUTINE CDF_get_num_vattrs (id, num_attrs, status)

INTEGER*4 id lin
INTEGER*4 num_attrs I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_num_zvars (id, num_vars, status)

INTEGER*4 id lin
INTEGER*4 num_vars I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_readonly_mode (id, readonly, status)

INTEGER*4 id lin
INTEGER*4 readonly Iout
INTEGER*4 status I out
SUBROUTINE CDF_get_stage cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers Iout
INTEGER*4 status I out

302

SUBROUTINE CDF_get status_text (statusid, text, status)

INTEGER*4 statusid lin
CHARACTER text*(*) ! out
INTEGER*4 status I out
INTEGER*4 FUNCTION CDF_get var_num (id, var_name)

INTEGER*4 id lin
INTEGER*4 var_name*(*) lin

SUBROUTINE CDF_get vars_maxwrittenrecnums (id, max_rvars_recnum,
1 max_zvars_recnum, status)

INTEGER*4 id lin
INTEGER*4 max_rvars_recnum I out
INTEGER*4 max_zvars_recnum I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_version (id, version, release, increment, status)

INTEGER*4 id in
INTEGER*4 version out

]

1
INTEGER*4 release ! out

|

|

INTEGER*4 increment out
INTEGER*4 status out
SUBROUTINE CDF_get zmode (id, zmode, status)

INTEGER*4 id lin
INTEGER*4 zmode I out
INTEGER*4 status I out
SUBROUTINE CDF_get_zvar_allocrecs (id, var_num, num_recs, status)

INTEGER*4 id in

!
INTEGER*4 var_num lin

|

|

INTEGER*4 num_recs out
INTEGER*4 status out
SUBROUTINE CDF_get_zvar_blockingfactor (id, var_num, bf, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 bf ! out
INTEGER*4 status I out
SUBROUTINE CDF_get_zvar_cachesize (id, var_num, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 num_buffers I out
INTEGER*4 status ! out
SUBROUTINE CDF_get _zvar_compression (id, var_num, compress_type, compress_parms,
1 compress_percent, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 compress_type I out
INTEGER*4 compress_parms(*) I out
INTEGER*4 compress_percent ! out
INTEGER*4 status I out

SUBROUTINE CDF _get zvar _data (id, var_num, rec_num, indices, value, status)

303

INTEGER*4 id
INTEGER*4 var_num
INTEGER*4 rec_num
INTEGER*4 indices(*)
<type> value
INTEGER*4 status

SUBROUTINE CDF_get_zvar_datatype (id, var_num, data_type, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 data_type

INTEGER*4 status

SUBROUTINE CDF_get_zvar_dimsizes (id, var_num, dim_sizes, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 dim_sizes(*)

INTEGER*4 status

SUBROUTINE CDF_get zvar_dimvariances (id, var_num, dim_varys, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 dim_varys(*)

INTEGER*4 status

SUBROUTINE CDF_get_zvar_maxallocrecnum (id, var_num, rec_num, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 rec_num

INTEGER*4 status

SUBROUTINE CDF_get zvar_maxwrittenrecnum (id, var_num, rec_num, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 rec_num

INTEGER*4 status

SUBROUTINE CDF_get_zvar_name (id, var_num, var_name, status)
INTEGER*4 id

INTEGER*4 var_num

CHARACTER var_name*(*)

INTEGER*4 status

SUBROUTINE CDF_get _zvar_numdims (id, var_num, num_dims, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 num_dims

INTEGER*4 status

SUBROUTINE CDF_get_zvar_numelems (id, var_num, num_elems, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 num_elems

INTEGER*4 status

SUBROUTINE CDF_get zvar_numrecs (id, var_num, num_recs, status)

304

INTEGER*4 id
INTEGER*4 var_num
INTEGER*4 num_recs
INTEGER*4 status

SUBROUTINE CDF_get_zvar_padvalue (id, var_num, pad_value, status)
INTEGER*4 id

INTEGER*4 var_num

<type> pad_value

INTEGER*4 status

SUBROUTINE CDF_get zvar_recorddata (id, var_num, rec_num, record_data, status)

INTEGER*4 id
INTEGER*4 var_num
INTEGER*4 rec_num
<type> record_data
INTEGER*4 status

SUBROUTINE CDF_get_zvar_recvariance (id, var_num, rec_vary, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 rec_vary

INTEGER*4 status

SUBROUTINE CDF_get zvar_reservepercent (id, var_num, reserve_percent, status)

INTEGER*4 id

INTEGER*4 var_num
INTEGER*4 reserve_percent
INTEGER*4 status

SUBROUTINE CDF_get_zvar_seqdata (id, var_num, value, status)
INTEGER*4 id

INTEGER*4 var_num

<type> value

INTEGER*4 status

SUBROUTINE CDF_get_zvar_seqpos (id, var_num, rec_num, indices, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 rec_num

INTEGER*4 indices(*)

INTEGER*4 status

SUBROUTINE CDF_get zvars_maxwrittenrecnum (id, rec_num, status)
INTEGER*4 id

INTEGER*4 rec_num

INTEGER*4 status

SUBROUTINE CDF_get_zvar_sparserecords (id, var_num, srecords, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 srecords

INTEGER*4 status

SUBROUTINE CDF_get zvars_recorddata (id, num_var, var_nums, rec_num,
1 buffer, status)

305

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

id

num_var
var_nums(*)
rec_num
buffer

status

lin
lin
lin
lin
! out
! out

SUBROUTINE CDF_hyper_get_zvar_data (id, var_num, rec_start, rec_count, rec_interval,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

id;
var_num
rec_start
rec_count
rec_interval
indices(*)
counts(*)
intervals(*)
buffer
status

indices, counts, intervals, buffer, status)

!
!
!
lin
I
1
1

lin
I out
I out

SUBROUTINE CDF_hyper_put_zvar_data (id, var_num, rec_start, rec_count, rec_interval,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

id

var_num
rec_start
rec_count
rec_interval
indices(*)
counts(*)
intervals(*)
buffer
status

indices, counts, intervals, buffer, status)

SUBROUTINE CDF _inquire_attr (id, attr_num, attr_name, attr_scope, max_gentry,
max_rentry, max_zentry, status)

1
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

attr_num
attr_name*(*)
attr_scope
max_gentry
max_rentry
max_zentry
status

lin

lin

! out
! out
! out
! out
! out
! out

SUBROUTINE CDF _inquire_attr_gentry (id, attr_num, entry_num, data_type, num_elements,

1

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
data_type

num_elements

status

status)

lin
lin
lin
! out
! out
! out

SUBROUTINE CDF _inquire_attr_rentry (id, attr_num, entry_num, data_type, num_elements,

1
INTEGER*4

id

status)

306

lin

INTEGER*4 attr_num lin

INTEGER*4 entry_num lin
INTEGER*4 data_type Iout
INTEGER*4 num_elements I out
INTEGER*4 status ! out
SUBROUTINE CDF _inquire_attr_zentry (id, attr_num, entry_num, data_type, num_elements,
1 status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type I out
INTEGER*4 num_elements Iout
INTEGER*4 status ! out
SUBROUTINE CDF _inquire_cdf (id, num_dims, dim_sizes, encoding, majority, max_rrec,

1 num_rvars, max_zrec, num_zvars, num_attrs, status)
INTEGER*4 id lin
INTEGER*4 num_dims out
INTEGER*4 dim_sizes(CDF_MAX_DIMS) Iout
INTEGER*4 encoding I out
INTEGER*4 majority out
INTEGER*4 max_rrec Iout
INTEGER*4 num_rvars out
INTEGER*4 max_zrec Iout
INTEGER*4 num_zvars I out
INTEGER*4 num_attrs I out
INTEGER*4 status ! out
SUBROUTINE CDF _inquire_zvar (id, var_num, var_name, data_type, num_elements, num_dims,
1 dim_sizes, rec_variance, dim_variances, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
CHARACTER var_name*(CDF_VAR_NAME_LEN256) ! out
INTEGER*4 data_type I out
INTEGER*4 num_elements Iout
INTEGER*4 num_dims I out
INTEGER*4 dim_sizes(CDF_MAX_DIMS) ! out
INTEGER*4 rec_variance Iout
INTEGER*4 dim_variances(CDF_MAX_DIMS) I out
INTEGER*4 status ! out
SUBROUTINE CDF_open_cdf (CDF_name, id, status)

CHARACTER CDF_name*(*) lin
INTEGER*4 id ! out
INTEGER*4 status I out

SUBROUTINE CDF_put_attr_gentry (id, attr_num, entry_num, data_type, num_elements, value,
1 status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type lin
INTEGER*4 num_elements lin
<type> value lin
INTEGER*4 status I out

307

SUBROUTINE CDF_put_attr_rentry (id, attr_num, entry_num, data_type, num_elements, value,
1 status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type lin
INTEGER*4 num_elements lin
<type> value lin
INTEGER*4 status ! out

SUBROUTINE CDF_put_attr_zentry (id, attr_num, entry_num, data_type, num_elements, value,
1 status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type lin
INTEGER*4 num_elements lin
<type> value lin
INTEGER*4 status I out
SUBROUTINE CDF_put_zvar_data (id, var_num, rec_num, indices, value, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 rec_num lin
INTEGER*4 indices(*) Lin
<type> value lin
INTEGER*4 status ! out
SUBROUTINE CDF_put_zvar_recorddata (id, var_num, rec_num, values, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 rec_num lin
<type> values lin
INTEGER*4 status Iout
SUBROUTINE CDF_put_zvar_seqdata (id, var_num, value, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
<type> value lin
INTEGER*4 status ! out
SUBROUTINE CDF_put_zvars_recorddata (id, num_var, var_nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var lin
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num lin
<type> buffer lin
INTEGER*4 status ! out
SUBROUTINE CDF_rename_attr (id, attr_num, attr_name, status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
CHARACTER attr_name*(*) lin
INTEGER*4 status I out

308

SUBROUTINE CDF_rename_zvar (id, var_num, var_name, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
CHARACTER var_name*(*) lin
INTEGER*4 status ! out
SUBROUTINE CDF _set_attr_gentry_dataspec (id, attr_num, entry_num, data_type, status)
INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type lin
INTEGER*4 num_elems lin
INTEGER*4 status ! out

SUBROUTINE CDF _set_attr_rentry _dataspec (id, attr_num, entry_num, data_type, status)
INTEGER*4 id lin
INTEGER*4 attr_num Hi
INTEGER*4 entry_num !
INTEGER*4 data_type lin
|
|

INTEGER*4 num_elems in
INTEGER*4 status out
SUBROUTINE CDF_set_attr_scope (id, attr_num, scope, status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 scope lin
INTEGER*4 status I out

SUBROUTINE CDF _set_attr_zenty dataspec (id, attr_num, entry_num, data_type, status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type lin
INTEGER*4 num_elems lin
INTEGER*4 status I out
SUBROUTINE CDF_set_cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers lin
INTEGER*4 status ! out
SUBROUTINE CDF_set_compress_cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers lin
INTEGER*4 status Iout
SUBROUTINE CDF_set_compression (id, compress_type, compress_parms, status)
INTEGER*4 id lin
INTEGER*4 compress_type lin
INTEGER*4 compress_parms(*) lin
INTEGER*4 status ! out
SUBROUTINE CDF _set_decoding (id, decoding, status)

INTEGER*4 id lin
INTEGER*4 decoding lin

309

INTEGER*4

status

SUBROUTINE CDF _set_encoding (id, encoding, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_set_format (id, format, status)

INTEGER*4
INTEGER*4
INTEGER*4

id

encoding

status

id
format
status

SUBROUTINE CDF_set_majority (id, majority, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_set_negtoposfp0_mode (id, negtoposfp0, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_set_readonly_mode (id, readonly, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_set_stage_cachesize (id, num_buffers, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_set zmode (id, zmode, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_set_zvar_allocblockrecs (id, var_num, start_rec, end_rec, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _set_zvar_allocrecs (id, var_num, num_recs, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _set_zvar_blockingfactor (id, var_num, bf, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
majority
status

id

negtoposfp0

status

id
readonly
status

id

num_buffers

status

id
zmode
status

id
var_num
start_rec
end_rec
status

id
var_num

num_recs

status

id
var_num
bf

status

310

SUBROUTINE CDF _set_zvar_cachesize (id, var_num, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 num_buffers lin
INTEGER*4 status ! out

SUBROUTINE CDF _set_zvar_compression (id, var_num, compress_type, compress_parms, status)
INTEGER*4 id lin

INTEGER*4 var_num lin
INTEGER*4 compress_type lin
INTEGER*4 compress_parms(*) lin
INTEGER*4 status I out
SUBROUTINE CDF_set_zvar_dataspec (id, var_num, data_type, status)

INTEGER*4 id in
INTEGER*4 var_num in

]

!
INTEGER*4 data_type lin

]

]

INTEGER*4 num_elems in
INTEGER*4 status out
SUBROUTINE CDF_set_zvar_dimvariances (id, var_num, dimvarys, status)

INTEGER*4 id in
INTEGER*4 var_num in

]

1
INTEGER*4 dimvarys(*) lin

1

INTEGER*4 status out
SUBROUTINE CDF_set_zvar _initialrecs (id, var_num, num_recs, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 num_recs lin
INTEGER*4 status ! out
SUBROUTINE CDF_set_zvar_padvalue (id, var_num, value, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
<type> value lin
INTEGER*4 status I out
SUBROUTINE CDF_set_zvar_recvariance (id, var_num, rec_vary, status)

INTEGER*4 id in
INTEGER*4 var_num in

|

!
INTEGER*4 rec_vary lin

|

INTEGER*4 status out
SUBROUTINE CDF _set_zvar_reservepercent (id, var_num, reserve_percent, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 reserve_percent lin
INTEGER*4 status ! out
SUBROUTINE CDF_set_zvars_cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers lin
INTEGER*4 status I out

SUBROUTINE CDF_set_zvar_seqpos (id, var_num, rec_num, indices, status)

311

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 rec_num lin
INTEGER*4 indices(*) lin
INTEGER*4 status I out
SUBROUTINE CDF _set_zvar_sparserecords (id, var_num, sparse_records, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 sparse_records lin
INTEGER*4 status ! out
B.3 Internal Interface

INTEGER*4 FUNCTION CDF_lib (fnc, ..., status)
INTEGER*4 fnc

INTEGER*4 status
CLOSE_

CDF_
'VAR_
ZVAR_

CONFIRM_

ATTR_
ATTR_EXISTENCE_
CDF_
CDF_ACCESS_
CDF_CACHESIZE_
CDF_DECODING_
CDF_NAME_

CDF_NEGtoPOSfp0_MODE_
CDF_READONLY_MODE._
CDF_STATUS_
CDF_zMODE_
COMPRESS_CACHESIZE_
CURGENTRY_EXISTENCE_
CURIENTRY_EXISTENCE_
CURZENTRY_EXISTENCE_
gENTRY_
gENTRY_EXISTENCE_
rENTRY _

rENTRY _EXISTENCE_
'VAR_

r'VAR_CACHESIZE_
'VAR_EXISTENCE_
r'VAR_PADVALUE_
'VAR_RESERVEPERCENT _

INTEGER*4 attr_num
CHARACTER attr_name*(*)
INTEGER*4 id

INTEGER*4 num_buffers
INTEGER*4 decoding

lin

! out

I out
lin
I out

I out
I out

CHARACTER CDF_name*(CDF_PATHNAME_LEN)

INTEGER*4 mode
INTEGER*4 mode
INTEGER*4 status
INTEGER*4 mode
INTEGER*4 num_buffers

INTEGER*4 entry_num
INTEGER*4 entry_num
INTEGER*4 entry_num
INTEGER*4 entry_num
INTEGER*4 var_num
INTEGER*4 num_buffers
CHARACTER var_name*(*)

INTEGER*4 percent

312

I out
I out
I out
I out
I out
! out

I out
lin
I out
lin
I out
I out
lin

I out

rVAR_SEQPOS_

r'VARs_DIMCOUNTS_
r'VARs_DIMINDICES_
r'VARs_DIMINTERVALS_
'VARs_RECCOUNT _
'VARs_RECINTERVAL _
rVARs_RECNUMBER _
STAGE_CACHESIZE_
ZENTRY_
ZENTRY_EXISTENCE_
ZVAR_
ZVAR_CACHESIZE_
zZVAR_DIMCOUNTS_
zZVAR_DIMINDICES_
zZVAR_DIMINTERVALS_
ZVAR_EXISTENCE_
ZVAR_PADVALUE_
ZVAR_RECCOUNT_
ZVAR_RECINTERVAL _
ZVAR_RECNUMBER _
ZVAR_RESERVEPERCENT _
ZVAR_SEQPOS_

CREATE_

ATTR_

CDF_

'VAR_

ZVAR_

DELETE_

ATTR_
CDF_

gENTRY_
rENTRY _

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

313

rec_num
indices(CDF_MAX_DIMS)
counts(CDF_MAX_DIMS)
indices(CDF_MAX_DIMS)
intervals(CDF_MAX_DIMS)
rec_count

rec_interval

rec_num

num_buffers

entry_num

entry_num

var_num

num_buffers
counts(CDF_MAX_DIMS)
indices(CDF_MAX_DIMS)
intervals(CDF_MAX_DIMS)
var_name*(*)

rec_count

rec_interval

rec_num

percent

rec_num
indices(CDF_MAX_DIMS)

attr_name*(*)
scope
attr_num

CDF_name*(*)

num_dims lin

dim_sizes(*)
id

var_name*(*)
data_type
num_elements
rec_vary
dim_varys(*)
var_num

var_name*(*)
data_type
num_elements

num_dims lin

dim_sizes(*)
rec_vary
dim_varys(*)
var_num

GET_

'VAR_
r'VAR_RECORDS_

ZENTRY_
ZVAR_
ZVAR_RECORDS_

ATTR_MAXgENTRY_
ATTR_MAXIENTRY _
ATTR_MAXZENTRY _
ATTR_NAME_

ATTR_NUMBER_

ATTR_NUMgENTRIES_
ATTR_NUMIENTRIES_
ATTR_NUMZENTRIES_
ATTR_SCOPE_
CDF_COMPRESSION_

CDF_COPYRIGHT_

CDF_ENCODING_
CDF_FORMAT _
CDF_INCREMENT _
CDF_INFO_

CDF_MAJORITY_
CDF_NUMATTRS_
CDF_NUMgATTRS_
CDF_NUMIVARS_
CDF_NUMVATTRS_
CDF_NUMzVARS_
CDF_RELEASE_
CDF_VERSION_
DATATYPE_SIZE_

gENTRY_DATA_
gENTRY _DATATYPE_
gENTRY_NUMELEMS_
LIB_COPYRIGHT _

LIB_INCREMENT _
LIB_RELEASE_
LIB_subINCREMENT _
LIB_VERSION_
rENTRY_DATA_
rENTRY_DATATYPE_
rENTRY_NUMELEMS_
'VAR_ALLOCATEDFROM_

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*8
INTEGER*8
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
CHARACTER

INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4

314

first_record
last_record

first_record
last_record

max_entry
max_entry
max_entry

lin
lin

lin
lin

I out
I out
I out

attr_name*(CDF_ATTR_NAME_LEN256)

attr_name*(*)
attr_num
num_entries
num_entries
num_entries
scope

c_type

c_parms(CDF_MAX_PARMS)

c_pct

! out
lin

I out
! out
! out
! out
! out
! out
! out
I out

copy_right*(CDF_COPYRIGHT_LEN)

encoding
format
increment

CDF_name*(*)

C_type

c_parms(CDF_MAX_PARMS)

c_size
u_size
majority
num_attrs
num_attrs
num_vars
num_attrs
num_vars
release
version
data_type
num_bytes
value
data_type
num_elements

I out
I out
I out
I out
lin

I out
! out
I out
I out
I out
I out
! out
I out
I out
I out
I out
I out
lin

I out
! out
I out
! out

copy_right*(CDF_COPYRIGHT_LEN)

increment
release

subincrement*1

version

value
data_type
num_elements
start_record

I out
I out
I out
I out
I out
! out
I out
I out
lin

'VAR_ALLOCATEDTO_

r'VAR_BLOCKINGFACTOR_
r'VAR_COMPRESSION_

r'VAR_DATA_
r'VAR_DATATYPE_
r'VAR_DIMVARYS_
r'VAR_HYPERDATA_
r'VAR_MAXallocREC_
r'VAR_MAXREC_
r'VAR_NAME_

r'VAR_NINDEXENTRIES_
r'VAR_nINDEXLEVELS _
rVAR_nINDEXRECORDS _
r'VAR_NUMallocRECS
rVAR_NUMBER_

'VAR_NUMELEMS_
r'VAR_NUMRECS_
'VAR_PADVALUE_
'VAR_RECVARY _
'VAR_SEQDATA_
'VAR_SPARSEARRAYS_

'VAR_SPARSERECORDS_
rVARs_DIMSIZES_
rVARs_MAXREC_
rVARs_NUMDIMS_
'VARs_RECDATA_

STATUS_TEXT_
ZENTRY_DATA_
ZENTRY_DATATYPE_
ZENTRY_NUMELEMS_
ZVAR_ALLOCATEDFROM _

ZVAR_ALLOCATEDTO_

zZVAR_BLOCKINGFACTOR_
zVAR_COMPRESSION_

ZVAR_DATA_
zZVAR_DATATYPE_
zVAR_DIMSIZES _
zVAR_DIMVARYS _
zZVAR_HYPERDATA _
ZVAR_MAXallocREC _
zZVAR_MAXREC _

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
<type>

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

CHARACTER

<type>

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4

315

next_record

start_record

last_record

blocking_factor

c_type
c_parms(CDF_MAX_PARMS)
c_pct

value

data_type
dim_varys(CDF_MAX_DIMS)
buffer

max_rec

max_rec

I out
lin

I out
I out
I out
I out
I out
I out
I out
! out
! out
I out
I out

var_name*(CDF_VAR_NAME_LEN256)

num_entries
num_levels
num_records
num_records
var_name*(*)
var_num
num_elements
num_records
value
rec_vary
value
s_arrays_type

I out
I out
I out
! out
I out
lin

I out
I out
I out
I out
I out
I out
I out

a_arrays_parms(CDF_MAX_PARMS)

a_arrays_pct

s_records_type
dim_sizes(CDF_MAX_DIMS)
max_rec

num_dims

num_vars

var_nums(*)

buffer

text*(CDF_STATUSTEXT_LEN)

value

data_type

num_elements

start_record

next_record

start_record

last_record

blocking_factor

c_type
c_parms(CDF_MAX_PARMS)
c_pct

value

data_type
dim_sizes(CDF_MAX_DIMS)
dim_varys(CDF_MAX_DIMS)
buffer

max_rec

max_rec

I out
I out
I out
I out
I out
I out
lin

lin

! out
! out
! out
I out
I out
lin

I out
lin

I out
I out
I out
I out
I out
! out
I out
! out
I out
! out
I out
I out

NULL _

OPEN_

PUT__

zZVAR_NAME_

ZVAR_nINDEXENTRIES_
ZVAR_nINDEXLEVELS_
ZVAR_nINDEXRECORDS_
zZVAR_NUMallocRECS_
zZVAR_NUMBER _

ZVAR_NUMDIMS_
zZVAR_NUMELEMS_
zZVAR_NUMRECS_
ZVAR_PADVALUE_
ZVAR_RECVARY _
ZVAR_SEQDATA_
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS _
ZVARs_MAXREC_
ZVARs_RECDATA _

CDF_

ATTR_NAME_
ATTR_SCOPE_
CDF_COMPRESSION_

CDF_ENCODING_
CDF_FORMAT _
CDF_MAJORITY_
gENTRY _DATA_
gENTRY_DATASPEC

rENTRY_DATA_

rENTRY_DATASPEC_

'VAR_ALLOCATEBLOCK_

r'VAR_ALLOCATERECS_

r'VAR_BLOCKINGFACTOR_

r'VAR_COMPRESSION_

'VAR_DATA_
'VAR_DATASPEC_

'VAR_DIMVARYS_

CHARACTER var_name*(CDF_VAR_NAME_LEN256)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
<type>
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

CHARACTER
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4

316

num_entries
num_levels
num_records
num_records
var_name*(*)
var_num
num_dims
num_elements
num_records
value
rec_vary
value
s_arrays_type

I out
! out
! out
I out
I out
lin

I out
I out
I out
I out
I out
I out
I out
I out

a_arrays_parms(CDF_MAX_PARMS)

a_arrays_pct
s_records_type
max_rec
num_vars
var_nums(*)
buffer

CDF_name*(*)
id

attr_name*(*)
scope

cType
c_parms(*)
encoding
format
majority
data_type
num_elements
value
data_type
num_elements
data_type
num_elements
value
data_type
num_elements
first_record
last_record
numRecords
blockingFactor
cType
c_parms(*)
value
data_type
num_elements
dim_varys(*)

! out
! out
! out
! out
lin

lin

I out

'VAR_HYPERDATA_
rVAR_INITIALRECS_
'VAR_NAME_
r'VAR_PADVALUE_
'VAR_RECVARY _
'VAR_SEQDATA_
'VAR_SPARSEARRAYS_

r'VAR_SPARSERECORDS_
'VARs_RECDATA_

ZENTRY_DATA_

ZENTRY_DATASPEC_
ZVAR_ALLOCATEBLOCK _

ZVAR_ALLOCATERECS_

ZVAR_BLOCKINGFACTOR _

ZVAR_COMPRESSION _

ZVAR_DATA_
ZVAR_DATASPEC_

ZVAR_DIMVARYS_
ZVAR_INITIALRECS_
ZVAR_HYPERDATA_
ZVAR_NAME_
ZVAR_PADVALUE_
ZVAR_RECVARY_
ZVAR_SEQDATA_
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS_
ZVARs_RECDATA_

SELECT_

ATTR_
ATTR_NAME_

CDF_

CDF_CACHESIZE_
CDF_DECODING_
CDF_NEGtoPOSfp0_MODE_
CDF_READONLY_MODE._
CDF_SCRATCHDIR_
CDF_STATUS_
CDF_zMODE_
COMPRESS_CACHESIZE_
gENTRY_

rENTRY _

rENTRY_NAME_

'VAR_

r'VAR_CACHESIZE_

<type>
INTEGER*4
CHARACTER
<type>
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
CHARACTER
<type>
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4

317

buffer
num_records
var_name*(*)
value

rec_vary

value
s_arrays_type
a_arrays_parms(*)
s_records_type
num_vars
var_nums(*)
buffer
data_type
num_elements
value
data_type
num_elements
first_record
last_record
numRecords
blockingFactor
cType
c_parms(*)
value
data_type
num_elements
dim_varys(*)
num_records
buffer
var_name
value

rec_vary

value
s_arrays_type
a_arrays_parms(*)
s_records_type
num_vars
var_nums(*)
buffer

attr_num
attr_name*(*)
id
num_buffers
decoding
mode

mode
dir_name*(*)
status

mode
num_buffers
entry_num
entry_num
var_name*(*)
var_num
num_buffers

'VAR_NAME_
'VAR_RESERVEPERCENT _
r'VAR_SEQPOS_

r'VARs_CACHESIZE_
rVARs_DIMCOUNTS_
rVARs_DIMINDICES_
rVARs_DIMINTERVALS_
'VARs_RECCOUNT _
rVARs_RECINTERVAL _
rVARs_RECNUMBER _
STAGE_CACHESIZE_
ZENTRY _
ZENTRY_NAME_

ZVAR_
ZVAR_CACHESIZE_
zZVAR_DIMCOUNTS_
zZVAR_DIMINDICES_
zZVAR_DIMINTERVALS_
ZVAR_NAME_
ZVAR_RECCOUNT _
ZVAR_RECINTERVAL _
ZVAR_RECNUMBER _
ZVAR_RESERVEPERCENT _
ZVAR_SEQPOS_

ZVARs_CACHESIZE_
ZVARs_RECNUMBER _

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

318

var_name*(*)
percent
rec_num
indices(*)
num_buffers
counts(*)
indices(*)
intervals(*)
rec_count
rec_interval
rec_num
num_buffers
entry_num
var_name*(*)
var_num
num_buffers
counts(*)
indices(*)
intervals(*)
var_name*(*)
rec_count
rec_interval
rec_num
percent
rec_num
indices(*)
num_buffers
rec_num

B.4 EPOCH Utility Routines

SUBROUTINE compute_ EPOCH (year, month, day, hour, minute, second, msec, epoch)
INTEGER*4 vyear,

INTEGER*4 month;

INTEGER*4 day;

INTEGER*4 hour;

INTEGER*4 minute;

INTEGER*4 second;

INTEGER*4 msec;

35

REAL*4 epoch; out
SUBROUTINE EPOCH_breakdown (epoch, year, month, day, hour, minute, second, msec)

REAL*4 epoch; in
INTEGER*4 year, out
INTEGER*4 month; out

]
|
!
INTEGER*4 day; Iout
]
1
I
1

INTEGER*4 hour; out
INTEGER*4 minute; out
INTEGER*4 second; out
INTEGER*4 msec; out
SUBROUTINE encode_EPOCH (epoch, epString)

REAL*8 epoch; lin
CHARACTER epString*(EPOCH_STRING_LEN); ! out
SUBROUTINE encode_EPOCH1 (epoch, epString)

REAL*8 epoch; lin
CHARACTER epString*(EPOCH1_STRING_LEN); ! out
SUBROUTINE encode_EPOCH2 (epoch, epString)

REAL*8 epoch; lin
CHARACTER epString*(EPOCH2_STRING_LEN); ! out
SUBROUTINE encode_EPOCH3 (epoch, epString)

REAL*8 epoch; lin
CHARACTER epString*(EPOCH3_STRING_LEN); ! out
SUBROUTINE encode_EPOCHXx (epoch, format, epString)

REAL*8 epoch; lin
CHARACTER format*(EPOCHx_FORMAT_MAX); lin
CHARACTER epString*(EPOCHx_STRING_MAX); ! out
SUBROUTINE parse_ EPOCH (epString)

CHARACTER epString*(EPOCH_STRING_LEN); lin
REAL*8 epoch; I out
SUBROUTINE parse_EPOCH1 (epString)

CHARACTER epString*(EPOCH1_STRING_LEN); lin
REAL*8 epoch; I out

319

SUBROUTINE parse_EPOCH2 (epString)

CHARACTER epString*(EPOCH2_STRING_LEN); lin
REAL*8 epoch; Iout
SUBROUTINE parse_ EPOCH3 (epString)

CHARACTER epString*(EPOCH3_STRING_LEN); lin
REAL*8 epoch; I out

SUBROUTINE compute EPOCH16 (year, month, day, hour, minute, second, msec, epoch)
INTEGER*4 vyear; !
INTEGER*4 month; !
INTEGER*4 day; !
INTEGER*4 hour; !
INTEGER*4 minute; lin
INTEGER*4 second; !
INTEGER*4 msec; !
REAL*4 epoch(2); ! out

SUBROUTINE EPOCH16_breakdown (epoch, year, month, day, hour, minute, second, msec)

REAL*4 epoch(2); lin
INTEGER*4 year; I out
INTEGER*4 month; I out
INTEGER*4 day; ! out
INTEGER*4 hour; I out
INTEGER*4 minute; out
INTEGER*4 second; Iout
INTEGER*4 msec; ! out
SUBROUTINE encode_ EPOCH16 (epoch, epString)

REAL*8 epoch(2); lin
CHARACTER epString*(EPOCH16_STRING_LEN); ! out
SUBROUTINE encode EPOCH16_1 (epoch, epString)

REAL*8 epoch(2); lin
CHARACTER epString*(EPOCH16_1_STRING_LEN); ! out
SUBROUTINE encode_EPOCH16_2 (epoch, epString)

REAL*8 epoch(2); lin
CHARACTER epString*(EPOCH16_2_ STRING_LEN); ! out
SUBROUTINE encode_ EPOCH16_3 (epoch, epString)

REAL*8 epoch(2); lin
CHARACTER epString*(EPOCH16_3 STRING_LEN); Iout
SUBROUTINE encode_EPOCH16_x (epoch, format, epString)

REAL*8 epoch(2); lin
CHARACTER format*(EPOCHx_FORMAT_MAX); lin
CHARACTER epString*(EPOCHx_STRING_MAX); ! out
SUBROUTINE parse_EPOCH16 (epString)

CHARACTER epString*(EPOCH16_STRING_LEN); lin
REAL*8 epoch(2); out

SUBROUTINE parse_ EPOCH16_1 (epString)
CHARACTER epString*(EPOCH16_1 STRING_LEN); Lin

320

REAL*8 epoch(2); ! out

SUBROUTINE parse_EPOCH16_2 (epString)

CHARACTER epString*(EPOCH16_2_ STRING_LEN); lin
REAL*8 epoch; Iout
SUBROUTINE parse_ EPOCH16_3 (epString)

CHARACTER epString*(EPOCH16_3 STRING_LEN); Lin
REAL*8 epoch(2); Iout

321

Index

ALPHAOSF1_DECODING......ccccotnaeiririnieeseseenieeneaeas 18
ALPHAOSF1_ENCODING......16
ALPHAVMSd_DECODING18
ALPHAVMSA_ENCODINGccooveeiriiiieieses e 16
ALPHAVMSg _DECODINGcoovveveiriiiieeiesies e 18
ALPHAVMSg_ENCODING
ALPHAVMSIi_DECODINGccooiiiriiinnenseisieeseeens 18
ALPHAVMSIi_ENCODINGccooiiirriieenesei s 16
Attribute
gEntry
Number of Elements
ACCESSING w.vvvevieeieierieieste st see et sresbe st eeseeneeeas 170
Attribute
gEntry
Data Type
ACCESSING vttt 169
name
INQUITING c.eeeeeeee e 174
attributes
numbering
INQUITING ©.veeeeeee e 175
attributes
CrEALING vovvevveveeiiciecee e 27, 163, 225
(o101 £ 0| ST 210
CONFIFMING ..o 216
selecting
by name
by number ...
elBtING vt
entries
CUITENT ottt 210, 211
CONFIrMING ..o 218, 219, 222
selecting
DY NAMe....ooii 270, 273
by nUMber ... 270, 273
data specification
Changingcccoeeveieiiiieee e 34, 255, 263
data type
INQUINING...coeivieccece e 29, 235, 237, 245
number of elements
INQUIING...eeveieceeceee 29, 235, 237, 245
deleting
existence, determining.........cccccoevevvenencieienine 219, 222
maximum
INQUITING ... 32,189, 230
number of
INQUITING .. 231
reading
writing
existence, determiningcccoccverereneiencneneseee 216
gEntries
data specification
ChanNgiNgccooeveeirice e 196, 201

323

WITING -t 196
NAMING ..ttt 23, 28, 163
inquiring32, 190, 230
TENAMING ..ttt eas 36, 252
number of
INQUITING oo 233
numbering
INQUITING oo 33,230
NUMDEINT ¢ 14
numberof
INQUITING oo 46
rEntries
data specification
changing
WIEEING oot
rEntry
FEAING ..ttt 178
scopes
ChANGING .eeeeeee e
CONSEANES ...
GLOBAL_SCOPEceeiiiirieieee e
VARIABLE_SCOPE
INQUITING oo
zEntries
data specification
ChangiNg......coo e 199
writing
zEntry
FRAUING .. veveeeiieiet ettt 183
Attributes
ElEtiNG cvoviveieee e 164
gEntries
data specification
data type
INQUITING .o 191
number of elements
INQUITING e 191
number of
INQUITING .o e 176
reading
gEntry
AelBtING . 165
MaXimUM ENIY ..o 171
name
FENAMING .evtveieriereeie ettt eeas 200
number of
global attributes
INQUITING 1veveecce e 188
INQUITING oo 87,187
variable attributes
INQUITING oo 188
rEntries
data specification

data type

INQUIFING. e 193
number of elements
INQUITING. . 193
number of
INQUITING ..o 177
rEntry
data specification
ChaNGINg .c.coveieee e 202
data type
INQUITING .. 180
deleting

Maximum entry
number of elements

INQUITING ..o 181
scope
changing
inquiring
zEntries
data specification
data type
INQUITING. .o 194
number of elements
INQUITING ..o 194
number of
INQUITING .. 177
zEntry
data specification
ChangiNgcoviiviiecce e 204
data type
INQUITING .. 185
deleting
MaXimuM ENLIY ..o 173
number of elements
INQUITING .. 186
CDF
copyright
INQUITING 1veveecc e 78

CDF library
copy right notice
MaxX 1ength ..o
reading.........c.....
internal interface
modes
-0.0t0 0.0
CONFIFMING ..vviviieieecee s 217
constants
NEGtOPOSTPOOTT......cviirciiicicicc, 23
NEGLOPOSTPOONcvveiviirierieieece e 22
SEIECHING vt 269
decoding
CONFIFMING ..viiviiee s 217
constants
ALPHAOSF1_DECODING.......ccccovrriririrnens 18
ALPHAVMSd_DECODING............... ...18
ALPHAVMSg_DECODING............... ...18
ALPHAVMSi_DECODING................ ...18
DECSTATION_DECODING
HOST_DECODINGcooviiiiriinieieieieieeene
HP_DECODINGcccoooovvirriririinnsieieieeens
IBMRS_DECODING
MAC_DECODINGcceoeovririrrinciriienae

324

NETWORK_DECODING.......cccoceevrerririerenenns 18
NeXT_DECODINGcccoovvrreneereree e 19
PC_DECODINGccooiiireiiriiiireeneeie e 18
SGi_DECODINGccooiiiriiieiiiecieiseeneiens 18
SUN_DECODINGccoeiiririirieienisieisieenesienne 18
VAX_DECODING......ccocvitiiieririiinieenesieenines 18
SEIECHING 1.veveieeceies e 268
read-only
CONFIMMING...ciiiiii e 218
constants
READONLYOff ..o 22
READONLYon
SEIECHING ..vvviieeci et
zMode
CONFIFMING...cviiiiiiii e 218
constants
ZMODEOSf ...t
zMODEon1
zMODEon2
SEIECHING ettt
shared CDF Library..........cccccooiiveneiiici e
standard interface (New)
standard interface (Original)ccccooniieninniiiicnnn 27
version
INQUITING e 236
CDFSLIB ...t 5
CAFINC. e 13
CDF_ get_stage_CaCheSIZe.........ccoceveieieiiieneiee e 85
CDF_attr_Createcccevveiveiiesiieieese e see e 27,163
CDF_attr_entry_iNQUITecccevevierieriiieie e 29
CDF_attr_get.....ccviiieiiiieieciee e 30
CDF_attr _INQUITEocvieiieieiieeicetese e 32
CDF_ATTR_NAME_LEN256c.cceovrerrreireereeeeeeenes 23
CDF_attr NUML..ceiiiiiieeeieee e 33
CDF_attr_put
CDF_attr_TENAIME.....cceiiiiiiiieii e 36
CDF_BYTE ..ottt 15
CDF_CHAR ..ottt 15
CDF_ClOSE....cuviviiiecieieieeet ettt 37
CDF _CloSe_CUf....uiiiiiicieeciee s 71
CDF _ClOSE_ZVA.......coiiiiiiiiiii e 100
CDF_confirm_attr_eXiStenCeccccoeerererencinesceeenes 159
CDF_confirm_gentry_eXiStence..........ccccocevoerereeneniennneenn 160
CDF_confirm_rentry_eXiStenCecccevvrerereerieiennneenns 161
CDF_confirm_zentry _eXiStenCe..........ccceevvverereerieiennneenns 162
CDF_confirm_zvar_exXiStenCe...........ccevvrererrereerveresrnnnenns 101
CDF_confirm_zvar_padvalue_existence..............ccccovve.. 102
CDF_COPYRIGHT_LEN
CDF _CrEALEvv e ciiee ettt ettt
CDF_create CAf ..o
CDF_create_zvar....
CDF_delete.............
CDF_delete_attr...............
CDF_delete_attr_gentry...
CDF_delete_attr_rentry........
CDF_delete_attr_zentry
CDF _delete_cdf...............
CDF_delete_zvar..............
CDF_delete_zZvar reCSccocuvoerereneeeceie st
CDF _0OC .ttt
CDF_DOUBLE
CDF_EPOCH.....ciiiiiiiree e

CDF_EPOCHI6cotiiiiiieeeeee e
CDF_EITor ..o
CDF_error or CDF_error....
CDF_FLOAT ...ccvvien
CDF_get_attr_gentry....ccccovieienieinie e
CDF_get_attr_gentry_datatype
CDF_get_attr_gentry_numelems...........ccccecvvveninenencnne. 170
CDF_get_attr_max_gentryccoceeerenenieeininieeneenes 171
CDF_get_attr_max_rentry
CDF_get_attr_max_zZentrycccceoveeerierenieenieniene e
CDF_get_attr NAMEcocoveriiiiieeeee e
CDF_get_attr_num...................
CDF_get_attr_num_gentries
CDF_get_attr_num_rentries......
CDF_get_attr_num_zentries......

CDF_get_attr_Tentryccccocveverinieiniiieneseeie e
CDF_get_attr_rentry_datatype
CDF_get_attr_rentry_numelems
CDF_get_attr_SCOPE.....eeeiviiieiie et
CDF_get_attr_ZENtrycoocvevieievieeeiese e
CDF_get_attr_zentry_datatype........ccccoeervevveienerereriennn,
CDF_get_attr_zentry_numelems
CDF_get_CacheSize ..o
CDF_get_compress_CacheSizecocverueieeninenienieieeee
CDF_get_compressionccoceeeereeneeeseseeneenes
CDF_get_compression_info......

CDF_get_copyright........
CDF_get_datatype_size..
CDF_get_decoding.........
CDF_get_encoding......
CDF_get_format.............
CDF_get_lib_copyright..
CDF_get_lib_Version ..o
CDF_get_majority.......ccocererieieeeese e
CDF_get_name
CDF_get_negtoposfp0_mode..........ccocerereieencieneieenne
CDF_get_NUM_ALHIS ...ooeeeiiiiie e
CDF_get_num_gattrs
CDF_get_num_vattrs
CDF_get_num_zvars..........
CDF_get_readonly_mode...
CDF_get_status_text..........
CDF_get_var_num......
CDF_get_vars_maxwrittenrecnums
CDF_get_VerSioN........ccocevieieeiiienieieeeee e
CDF_get_ZMOGE.......cociiiiiiieieece e
CDF_get_zvar_alloCrecscccovvivievienieiieieesecesesieenns
CDF_get_zvar_blockingfactor
CDF_get_zvar_CacheSizecccocvereneieninenc e
CDF_get_zvar_COMPreSSioNccoccoerereecnenereeseeeeennes
CDF_get_zvar_data...................
CDF_get_zvar_datatype......
CDF_get_zvar_dimsizes............
CDF_get_zvar_dimvariancesccocoevvrervenene.
CDF_get_zvar_maxallocrecnum
CDF_get_zvar_maxwrittenreCnum.........cceceeerereereeneene
CDF_get_zvar Name.......ccocviieriinieieiiesieseere e
CDF_get_zvar_numdims
CDF_get_zvar_numelemsccocooiieneiiiinenc e
CDF_get_zvar_numrecs
CDF_get_zvar_padvalue
CDF_get_zvar_recorddata........c..ccecerverrereeineneriesiernennns

325

CDF_get_zvar_reCVarianCeccoceeereeeeueseseereeneeieseeneenns 125

CDF_get_zvar_reservepercentcccoovevereecverenieenienneas 126
CDF_gBt_ZVAl_SBQ...cviiveriieriiniie et 127
CDF_get_zvar_SEgPOSccerereerurrieeieniieeesieseesiesieesaeseeas 128
CDF_get_zvar_sparsereCords..........cccouevvrererereerveresernenns 130
CDF_get_zvars_maxwrittenreCnum............ccocevververvevnrnenn. 129
CDF_get_zvars_recorddata...........ccceverireneneneienienicneenns 131

CDF_getrvarsrecorddata
CDF_getzvarsrecorddata

CDF_hyper_get_zvar_data.........cccceeereeireneneneeeseeeenes 133
CDF_hyper_put_zvar_dataccccoeererieenieneneieenneeenns 135
CDF _INQUITE. ..ttt 46
CDF_iNQUIrE_attr ...ocveveieieicese e 189
CDF_inquire_attr_gentryccocoveveveevieesieneseseese s 191
CDF_inquire_attr_rentryccoceoeveienineneneneeesesiee 193
CDF_inquire_attr_ZeNntryccccoveveverininene e 194
CDF_inquire_Cdf........ccoieiiiieie e 87
CDF_INQUITE_ZVAI ..ot 137
CDF_INTL oot 15
CDF _INT2 oottt 15
CDF_INTA oottt 15
CDF_lib

CDF _LIB ..t 6
CDF_MAX _DIMS ..ot 23
CDF_MAX _PARMS ..ottt 23
(01] = @ SRR 14
CDF_OPBN ..ottt 48
CDF_0PeN_COF .ot 89
CDF_PATHNAME_LENcoooiiiniinienrec e 23
CDF_put_attr_gentrycccccovvvvveiesieniesieiesiesie s see e 196
CDF_put_attr_reNtryccoevvvieiiieeie e 197
CDF_put_attr_Zentry........cccoceeveieneeieiieeseciesesee e 199
CDF_put_zvar_datacccooereneieieercee e 139
CDF_put_zvar_recorddataccoeveeerereneieeieneneeeenns 140
CDF_put_zvar_seqdata
CDF_put_zvars_recorddata............ccceoveveenenereereniennneenns 142
CDF_putrvarsrecorddatac.coverereeieienieneneeiesceeniens 49
CDF_putzvarsrecorddata...........cooervereereieiesesesieriessesnens 51
CDF_REALA ...ttt 15
CDF_REALSB ..ottt 15
CDF_rename_attr.......cccoovvevieiieeiie e e 200
CDF_Iename_ZVArccoeririeiieneeie e 144
CDF_set_attr_gentry_dataspec.........cccceeeeererereeienencneenn 201
CDF_set_attr_rentry_dataSpecccoveeveererereerinieneneenns 202
CDF_Set_attr_SCOPEccoccvrririrrereeieeecnre e 203
CDF_set_attr_zentry_dataspec...........ccoevevvriererieriernarnnnenns 204
CDF_set_blockingfactorcc.ccoceveviiviiieiiiieseieecs s 147
CDF_set_cachesize

CDF_Set_COMPIESSIONc.eeviriiieriiieiesiinie e 92
CDF_set_compression_cachesizecccceovrereneieeienenncns 91
CDF_set_decodingcoceoerireneieeieeiese e 93
CDF_Set_eNnCodiNGvcvrveveiiiiiireinecieisiee e 94
CDF_set_format........ccocoveieiiieiiieseee e 95
CDF_Set_MajOrity ...ccevveieieiieeiiesesiesiee e 96
CDF_set_negtoposfp0_MOdecccevveveeiieiireerieisieeiens 96
CDF_set_readonly_MOde...........ccocerereininieneneeieceenine 97
CDF_set_stage _CaCheSIzZeccoceveieiniieicieeeceieie 98
CDF_Set_ZMOGE.......ccueieiieeeiieerie e 99
CDF_set_zvar_allochlockrecs..........ccocooveiiineicineicne 145
CDF_set_zvar_alloCrecs........cccoevrviiniireinieineeececneenes
CDF_set_zvar_cachesize
CDF_set_zvar_COMPresSioN.........cooverveieeiesiereereeresseseenns 149

CDF_set_zvar_dataSpeccccooererereeneieeiniene e seeeeeenes ALPHAOSF1_ENCODINGccooooiiiiirneeienee
CDF_set_zvar_dimvariances..... ALPHAVMSd_ENCODING.......
CDF_set_zvar_initialrecs........... ALPHAVMSg_ENCODING......
CDF_set_zvar_padvalue........ ALPHAVMSi_ENCODING.......
CDF_set_zvar_recvarianCe...........ccocoovevveveesrernenn. DECSTATION_ENCODING
CDF_set_zvar_reservepercent HOST_ENCODINGcccevnenee.
CDF_Set_zZvar_SEOPOS.......cccueveerierieenriniieniesieene s HP_ENCODING.......ccooeiiiiiiiieecie e
CDF_set_zvar_SparsereCordsccoeeereeerenerueneeienennes IBMRS_ENCODING ..o
CDF_set_zvars_Cachesizecccoiiieneieiinene e MAC_ENCODING
CDF_STATUSTEXT_LENcccoeiiiiiiiieinieeeiceeene NETWORK_ENCODING.........cccornirrieieeiiens
CDF_UCHAR ..ottt NeXT_ENCODING.........cccovvrieiiniseeeeees
CDF_UINT1...... PC_ENCODING........
CDF_UINT2...... SGi_ENCODING.......
CDF_UINT4......... SUN_ENCODING.....
CDF _var close..... VAX_ENCODING....
CDF _var_create.... default.........ccoovevveinnnnnnn,
CDF_Var_get..coceiieeieeeeee e inquiring
CDF_var_hyper_get ... FESEHHING ..o
CDF_var_hyper_put.... format
CDF_Var_INQUIT....cveieieieeiisesie et ChANGING ..o 253
CDF_VAR_NAME_LEN256 constants
CDF_Var_NUM ...t MULTI_FILE ..ot 14
CDF_VaI_PUL ..ottt SINGLE_FILE ...t 14
CDF_Var_reNAME ...cveieiiesieeee e seeiesta e ste e e e see e default.......ccoveieiee
CDF_WARN ..ottt inquiring
CDFs inquiring
accessing resetting
browsing majority
cache buffers INQUITING oo 81
confirming 217, 218, 220, 222, 223 resetting
Selecting.....ccoooveveeeiiiiec 268, 270, 271, 273, 276 mode
cache size postoposfp0
INQUITING oot 74 FESELEING ...t 96
FESELEING vt 90 read only
stage FESELHING .. eevieieiticie e 97
FESEHHING ..ot 98 name
staging INQUITING oot 82
INQUITING v 85 NAMING c.vevvvieie e 23, 38, 48, 73, 89
ClOSING ..viviieece e 37,71, 216 negtoposfp0 mode
compression inquiring
cache size nulling................
INQUITING .o 75 opening
resetting overwriting
inquiring readonly mode
resetting INQUITING oo e 84
SPECITYING c.vevieiiec e scratch directory
COMPression types/parameters........ccoovveeerveveesesereennans 20 SPECITYING oo 269
copy right notice status
MaxX 1ength ..o 23 text
FEAAING ..ot 40, 232 INQUITING oo 70
COMTUPEEA ..t 38,72 version
CrEALING ..ottt 38, 72, 225 INQUITING oo 40, 86, 232, 234
CUITENT ..ttt 210 zmode
CONFIFMING .o 217 TESEHHING 1.veiveii e e 99
SEIECHING ..ot 268 zMode
decoding INQUITING oo 87
INQUITING c.eeeiie e 79 zVariables
resetting records
Aeletingoveeeeieieeee e MaXimuUM WHILEEN ..o 129
encoding COLUMN_MAUIOR ...ttt 19
ChangiNg .c.ooveiecee e 253 CoMPIlING..cniiiiie s 1
CONSEANTS ... 16 compression

326

CDF
INQUITING «.eeeieeee e
specifying
types/parameters
variables
INQUITING oo
reserve percentage
CONFIMMING ...veviiic s 220, 224
selecting
SPECITYING .ot
compute_EPOCH ..ot 284
compute_EPOCH16ccooiiiiiiiicenee e 289
confirm
existence
ALFTDULE. ...

ZEntry
zVariable

PAAVAIUE ...t
data type
size

INQUITING c.eeeieie e
data types
CONSEANES. ..t
CDF_BYTE.....
CDF_CHAR..........
CDF_DOUBLE.....
CDF_EPOCH........
CDF_EPOCH16.....
CDF_FLOAT
CDF_INTL..........
CDF_INT2. ottt
CDF_INTA ettt
CDF_REAL4
CDF_REALS
CDF_UCHAR ...coctiiiiiriseeei e
CDF_UINTI....... .
CDF_UINT2....
CDF_UINTA4....
INQUITING SIZE....oeiiiieiiieee e
DECSTATION_DECODING
DECSTATION_ENCODING
definitions file ...
DEFINITIONS.COMociiiiiiiisieieeeninisie e
dimensions

numbering
encode_EPOCH..........ccciiiiiic e 285
encode_EPOCHL.........cooiiiieiee e 285
encode_EPOCH16.......
encode_EPOCH16_1.......
encode_EPOCH16_2.......
encode_EPOCH16_3.......
encode_EPOCH16_x.......
encode_EPOCH2.........
encode_EPOCHS......
eNnCOde_EPOCHX.......coiiiiieiei et
EPOCH
COMPULING ettt
decomposing....
ENCOAING...evveveeveeriiee e

327

PAISING .ot 288, 289, 293
utility routines..............
compute_EPOCH
compute_EPOCH16
encode_EPOCH...........
encode_EPOCHLI.....
encode EPOCHI6........ccccoevvveiiie e
encode_ EPOCH16 1
encode_EPOCH16_2
encode_EPOCHI16_3......cccooiieieiineieneieeeeeie e 291
encode_EPOCHIL6 X...cccoocvveneieeieesenieieesesee s 291
encode_EPOCH2.........
encode_EPOCH3.....
encode_EPOCHX.........
EPOCH_breakdown........
EPOCH16_breakdown ...
parse_EPOCH
parse_EPOCHL1
parse_EPOCH16
parse_EPOCH16_1
parse_EPOCH16_2
parse_EPOCH16_3
parse_EPOCH2 ...
parse_EPOCHS3 ...
EPOCH_breakdowncccooiiinriiiieeicee e
EPOCH16
computing...........
decomposing......
encoding.............
parsing
EPOCHL16_breakdOoWncccecvevieienieiieniseeseseesie s 289
examples
accessing
Attribute
rEntry
MaxXimum entryccccoceeereieienene e 172
zEntry
Maximum entryccocovceeevierieeneseseee s 173
accessing
Attribute
gEntry
Data TYPE ..oveeeereeie e 170
Maximum entry
Number of Elements..........ccccoovvviiieneiicnnnn 171
allocating
zVariable
TECOTUS. ...ttt 146, 147
changing
attribute
rEntry
data specificationccoceoreiiiieniiceee 203

zEntry
data specificationcccceevevviiivineicicesen 205

CDF

ECOUING ... e 93
encoding....
FOrMAL.....cociii 95

MAJOTTLY ettt 96
mode
negtoposfp0
read only
zmode.............
ZVAriable ..o
attribute
data SpecifiCcation..........ccccovriiiiiiniiceeee 201
zVariable
blocking faCtorcooeiiiiiiieeec e
CACNE SIZE v
data specification..........
dimension variances.....
record variance.........
reserve percentage....
SPAISE FECONUS ...ttt
closing
O
rVariable
ZVAabIe ..o 100
confirm
existence

ZEntry..........
zVariable........
padValue
confirm
existence
AMDULE oo 160
creating
ALMTDULE . ..o

rVariable

zVariable
deleting

ATIDULE. ...

inquiring
ALMDULE. ...

zEntry
Attribute
rEntry
number of elements............cceevviviireiinnen. 181, 182

zEntry
data tYPe...eeeee e 185
number of elements..........cccoceveeeieiiicneiee, 186

Attributes
OENTES oo 176

number of attributesSccceeevvveceeiie e 187
number of gAHIDULEScccoiiiiie 188
number of VAHDbULES ...,

rENtries......ccovevvveveenen.
zEntries
CDF...coovevve,
CACNE SIZE .vviviectie et
compression
cache size
COPYIIGNE .
AECOTING....viieieeeee s
encoding....
format........
majority......
NAME...coevveirrirrerae.
NegtoposPO MOcceveririeiiiisereeeeree
number of zVaribales.........c..ccocveeieiieiceecieeeee 107
readonly Mode.........cocoiiiiiiiiie e 84
staging Cache SIZe........cocvverieieiiiiesese e 85
LTS o] PO 86
ZIMOOE .o 87
zVariables
records
MaXimum WIHENooeeeeeieeeeecee e 130
data type
L 4= YRS
error code explanation text
library
COPYIIGNE ..o 69
Library
VEISION.c.viiiiiecitie et ctee et e e sbe e ere e sabe s beesreeeree e 70
rVariable. ... 62
variable
[T 001 oL S 63
Variable
NUMDET vttt ve e 108
Variables
records
Maximum WEIttEN......cocvvvviieiecce e 109
ZVAriabIe ..o 138
allocated recordscocooveevieiiveecie e 110
blocking factorccooviieiiiiir e 111
CACNE SIZE .ot 112
COMPIESSION .ttt 113
ata tYPC .. 116
AIMENSION SIZES ...ecvviiriiieiiececcre e 117

records
maximum allocated...........covvvvreiiniiiiceans 118
MaXimUuM WITEEEN. ..o 119
WITTEEN ..ot 123
ESEIVE PEICENTAGEeevreririierie et 127
sequential POSILION..........ccceveireiiienece e 129
SPArse reCOrds tYPe ..ccoververereeeeesie e 131
Internal INterface.......cocevvvveeivciee e 207, 276
interpreting
SEALUS COUBS ... viveierieiieriiieeie e e 282
opening

reading
attribute

attribute entry.......ccooeviiiieee e 31
rVariable values

NYPEE e 58, 277

SINGIE o 57
TVariablescooovviiiicece e 43
rVariables full record..........cccoceveveeiiivie i 43
zVariable

PAA VAIUE ..o 124
zVariable values

TUl rECON ... 125

NYPEE e 134
sequential ... 128, 279
SINGIE o 114
ZVANADIES ..ot 44,131
zVariables full recordcccoovevveviiieieiecciennn 45, 132
renaming
ALMTDULE....ee e 200
ATTDULES . 36, 279
rVariable
zVariable
resetting
zVariable
PAA VAIUE ..o 154
seting
zVariable
sequential POSItION.........c.ccoevereiiineseeee 158
setting
zVariables
CACHE SIZE v 157
Status handIercc.oovvviciiiiice e 282
writing
attribute

rVariables full record...........cccevvvvveveiiiceieccce e, 50
zVariable values
TUHl rECON...eviceeece e 141
NYPEE e 136
multiple variable............ccooooiiiiiiie 280
SEQUENTIAL ..veviieieiee e 142
SINGIE o 139
ZVariableS......ocovicviiieciceee e 51, 142
zVariables full recordccccovevveviieciiiecinennn
GLOBAL_SCOFPE.................
HOST_DECODING....
HOST_ENCODING....
HP_DECODINGccootrieiieeirisesiee e
HP_ENCODING ..ottt s
IBMRS_DECODING
IBMRS_ENCODING

329

interfaces
INEEINAL.....ccveiiieece e 207
Standard (NEW)cevvrveiriineereeee s 67
Standard (Original)ccccovveneieieiic e 27
Internal INterfacecoevveiveiiiicie e 207
CUITNt OBJECES/STALES. ... cvvivecieieieece e 210
ALFTDULE o 210

sequential valueccocooveiviiineieece e 212,213
SEALUS COUB ...viviiiieet e 213
Variables ... 210
EXAMPIES ..o 207, 276
INdentation/Style.........covoiiiiiniiieee e 214
OPEIALIONS. ...ttt 216
status cOdes, retUrNEdc..ceovveieiciie e 213
SYNEAX vttt sttt 214
argument list........cooeeiiiicee e 214
HMITALIONS ... 214
item referenCing ..o 14
libcdfa....cooeeinee.
LIBCDF.OLBootiiiiiieieieieisiecsiee et 5,6
Library
copyright
INQUITING oo 69
version
INQUITING oo e 69
limits
attribute name
copyright text
dimensions.........ccccceeeenene
explanation/status teXt..........ccooeverieeniie e 23
FIlE NAME .
parameters
Variable NAME.........ccoviiiee e 23
HINKING 1o 5
shareable CDF libraryccoooveveiiiiiiiieie e 9
MAC_DECODING.......ccctniiirieinsesiees e 19
MAC_ENCODING.......cotmiiiirieneerreesee e 17
MULTI_FILE ...ttt 14
NEGOPOSTPOOTT ...t 23
NEGLOPOSTPOON....c.eiiviiiiiieiieiese e 22
NETWORK_DECODINGc.ccovvieieirienieesisessieesieienens 18
NETWORK_ENCODINGccoooiiieieieisese e 16
NeXT_DECODINGccoriieiriiinneisieesee e
NEXT_ENCODINGocciiiiiiriienseesiee e
NO_COMPRESSION
NO_SPARSEARRAYS ..ot 21
NO_SPARSERECORDS.......ccccotrieirieenieenesieeseeeneenenens 21
NOVARY ..ottt seenenens 20
PAD_SPARSERECORDS........cccoeeiriinieereses e 21
Parse_EPOCHccciiiiiiie e 288
parse_EPOCHL ..ot 288
Parse_EPOCHILGcccoovviiiiiieie e 292
parse_EPOCHL6 1cccceiiiiiiiiiiieiceee e 293
parse_EPOCHL6_2ccccoiiiiiiiiiiicnceeeiee e 293
parse_EPOCHL6_3cccoiiiieieieeie e 293
parse_EPOCH2Z ... 288
parse_EPOCHS ...t 289
PC_DECODING....
PC_ENCODINGccoeiiriiiriet et 17

PREV_SPARSERECORDS
programming interfacecccooveieiiinincneens
compilingceue.
linking..............
READONLYoff ...
READONLYon....
ROW_MAUIOR ..ottt
rVariables
ClOSING .ttt 53
CTEALING ...ttt 54
data specification
data type
INQUITING v 61
number of elements
INQUITING .. 61
dimensionality
INQUITING e 46, 87
full record
FEATING .. 43
WITEING ©veiieee e 49
multiple values
ACCESSING .evvevverrereeristestesierereerestestesteseesseresbesressesseeens 57
WIEING oo 59
naming
INQUITING e 61
FENAMING .ttt 65
number of
INQUITING 1o 47
records
maximum
INQUITING e 47
single value
ACCESSING .uveneereereeteriestereeeereetesteseeseeseeneeresnesbeseeneeneenas 56
WITTING 1o 64
scratch directory
SPECIHTYING . ..viiiieeee e
SGi_DECODING
SGi_ENCODING
SINGLE_FILE ..ot
sparse arrays
INQUITING .. e

specifying

sparse records
INQUITING .. 243, 251

SPECITYING....iiiiiieicice e

Standard Interface (New)
Standard Interface (Original).........ccccooeviiiiiiiiiiiic 27
status codes

confirming ...
selecting.......

explanation text
INQUITING «.eeeceie e
MaX 1eNgth ..o
explanation text....
informational...........cccoovecieiiiii e

INLErPreting.......oceieeiieiie e 282, 295

status handler, example.........ccocooeoiinieieneneeeeee 280
WAINING ¢t 295
SUN_DECODING.....ccctieiiriieerieei e 18
SUN_ENCODINGcctiiiiiieiiiet e 17
VARIABLE_SCOPEcooiiiiiriiiiieiisieseesee e 22
variables
aparse arrays
INQUIFING .o 242, 251, 259, 267
EYPES et 21
ClOSING. ..ttt 100, 216
compression
CONFIrMING ..o 220, 224
INQUITING .o 232, 238, 246
SEIECHING. ...t 271, 275
SPECITYING .. 256, 264
tYPES/PArAMELENS.ot 20
CIEALING .eveeeeeieece ettt 226, 227
CUITENT ...ttt 210
CONFIFMING ..o 220, 223
selecting
DY NAME....ciiiiic 271, 274
DY NUMbBEr ..o 270, 273
data specification
ChANGING ..ot 257, 264
data type
INQUITING . 239, 247
number of elements
INQUITING .o 241, 249
deleting
dimension counts
(o8 4 1111 211, 213
CONFIFMING...coviiiiiie e 221, 223
SEIECHING .. 272,274
dimension indices, starting
(10 (111 211, 212
CONFIrMING...ccviiiiieeeeee e 221, 223
SEIECHING .vvvecvieie e 272,274
dimension intervals
current
confirming....
SEIECHING ..
dimensionality
INQUITING oo
existence, determiningccoceevvvvveneieiniceiennns 220, 224
indices
NUMDEIING. c..cvviviiiesie e 14
majority
ChANGING ..o 253
CONSIABTING ..t 19
(o00] 1151] £ 19
COLUMN_MAUIOR ..ot 19
ROW_MAUJORcceiieiniieiscese et 19
AETAUIE. ..o 226

pad value
CONFIFMING .o
inquiring
specifying
FEATING .ovvevvevieieeie e
record count
CUITENE .ot
CONFIMMING ...eeviieci s 221, 224
SEIECHING .. 272,274
record interval
CUITENE .ttt
confirming...
selecting
record number, starting
(o1 [(=] | N 211, 212
confirming...
SEIECHING v 273, 275
records
allocated
INQUIrING ..o 237, 238, 241, 245, 249
SPECITYING ..o 255, 256, 263
blocking factor
INQUITING ..o 238, 246
SPECITYING ..cveiiiiici e 256, 264
eletiNg ..o 229
indexing
INQUITING e 240, 248
initial
WIHEING v 257, 265
maximum
INQUINING ... 240, 243, 248, 251
number of
INQUITING e 241, 250
NUMBDEFING ...t 14
sparse
INQUITING .o 243, 251
SPECITYING ..ooveieiiieee e 259, 267
variances
CONSEANTS ...t 20
NOVARY....

dimensional
INQUITING .o
specifying
record
Changingccooeveieiei e
INQUITING oo
WITEING e
Variables
number of
INQUITING e 87
numbering
INQUITING ©veeiee e 63, 107
records
maximum
INQUITING .. 87
maximum written
INQUITING ..

VAX_DECODING
VAX_ENCODING
ZMODEOTT ..ottt

331

ZIMODEONL ...ttt e 22
ZIMODEONZ ...ttt 22
zVariabels
records
AllOCALING ..o 145
zVariables
accessing
FUH FECOND ...
hyper values
sequential Value ... 127
SINGIE VAIUB......eeeiiecee e 114
blocking factor
inquiring
resetting
cache size
inquiring
resetting
compression
INQUITING oo s 113
FESEHHING 1.veveeeeeeee et 149
CIEALING cveviveieeei ettt 103
data specification
data type
INQUITING .o 137
number of elements
inquiring
FESETHING 1.veveieeeeee e
data type
INQUITING oo 115
deleting
dimension sizes
INQUITING oo 116
dimension variances
INQUITING e 117
FESETHING 1.veveeeeeee e 151
full record
FEATINGveveveeeeeeer e 44
WIHEING oot 51
name
inquiring
renaming
naming
INQUITING oo 137
number of
INQUITING oo 107
number of dimensions
INQUITING oo 121
number of elements
INQUITING oo s 122
pad value
ACCESSING. . eevevieterteeteeeneeieeteseestesee et seeseeseeseeneene e 123
FESETHING 1.veveeeeeee e 153
reading
FUIT TECOIT ..o 131
record variance
inquiring
resetting
records
allocated
INQUITING . 110
allocation
Aeleting .c.veveieicecec e

maximum allocated

INQUITING ..o 118
maximum written

INQUITING .. 119
written

INQUITING e 122
written initially ..., 152

reserve percentage

INQUITING e 126
FESELEING oo e 155

sequential position

332

INQUITING oo 128

SEELING ettt 157
sparse records type

inquiring

resetting
WIItiNg......ccoovenee.

FUIT TECO ..o 140

hyper ValUes..........ccoooveiiiiiiiiceee e 135

sequential value.....

SINGIE VAIUB......eeicce e 139

