libstdc++
hashtable_policy.h
Go to the documentation of this file.
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable_policy.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly.
28  * @headername{unordered_map,unordered_set}
29  */
30 
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
33 
34 #include <tuple> // for std::tuple, std::forward_as_tuple
35 #include <bits/stl_algobase.h> // for std::min, std::is_permutation.
36 #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits
37 
38 namespace std _GLIBCXX_VISIBILITY(default)
39 {
40 _GLIBCXX_BEGIN_NAMESPACE_VERSION
41 /// @cond undocumented
42 
43  template<typename _Key, typename _Value, typename _Alloc,
44  typename _ExtractKey, typename _Equal,
45  typename _Hash, typename _RangeHash, typename _Unused,
46  typename _RehashPolicy, typename _Traits>
47  class _Hashtable;
48 
49 namespace __detail
50 {
51  /**
52  * @defgroup hashtable-detail Base and Implementation Classes
53  * @ingroup unordered_associative_containers
54  * @{
55  */
56  template<typename _Key, typename _Value, typename _ExtractKey,
57  typename _Equal, typename _Hash, typename _RangeHash,
58  typename _Unused, typename _Traits>
59  struct _Hashtable_base;
60 
61  // Helper function: return distance(first, last) for forward
62  // iterators, or 0/1 for input iterators.
63  template<typename _Iterator>
65  __distance_fw(_Iterator __first, _Iterator __last,
67  { return __first != __last ? 1 : 0; }
68 
69  template<typename _Iterator>
71  __distance_fw(_Iterator __first, _Iterator __last,
73  { return std::distance(__first, __last); }
74 
75  template<typename _Iterator>
77  __distance_fw(_Iterator __first, _Iterator __last)
78  { return __distance_fw(__first, __last,
79  std::__iterator_category(__first)); }
80 
81  struct _Identity
82  {
83  template<typename _Tp>
84  _Tp&&
85  operator()(_Tp&& __x) const noexcept
86  { return std::forward<_Tp>(__x); }
87  };
88 
89  struct _Select1st
90  {
91  template<typename _Pair>
92  struct __1st_type;
93 
94  template<typename _Tp, typename _Up>
95  struct __1st_type<pair<_Tp, _Up>>
96  { using type = _Tp; };
97 
98  template<typename _Tp, typename _Up>
99  struct __1st_type<const pair<_Tp, _Up>>
100  { using type = const _Tp; };
101 
102  template<typename _Pair>
103  struct __1st_type<_Pair&>
104  { using type = typename __1st_type<_Pair>::type&; };
105 
106  template<typename _Tp>
107  typename __1st_type<_Tp>::type&&
108  operator()(_Tp&& __x) const noexcept
109  { return std::forward<_Tp>(__x).first; }
110  };
111 
112  template<typename _ExKey>
113  struct _NodeBuilder;
114 
115  template<>
116  struct _NodeBuilder<_Select1st>
117  {
118  template<typename _Kt, typename _Arg, typename _NodeGenerator>
119  static auto
120  _S_build(_Kt&& __k, _Arg&& __arg, const _NodeGenerator& __node_gen)
121  -> typename _NodeGenerator::__node_type*
122  {
123  return __node_gen(std::forward<_Kt>(__k),
124  std::forward<_Arg>(__arg).second);
125  }
126  };
127 
128  template<>
129  struct _NodeBuilder<_Identity>
130  {
131  template<typename _Kt, typename _Arg, typename _NodeGenerator>
132  static auto
133  _S_build(_Kt&& __k, _Arg&&, const _NodeGenerator& __node_gen)
134  -> typename _NodeGenerator::__node_type*
135  { return __node_gen(std::forward<_Kt>(__k)); }
136  };
137 
138  template<typename _NodeAlloc>
139  struct _Hashtable_alloc;
140 
141  // Functor recycling a pool of nodes and using allocation once the pool is
142  // empty.
143  template<typename _NodeAlloc>
144  struct _ReuseOrAllocNode
145  {
146  private:
147  using __node_alloc_type = _NodeAlloc;
148  using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
149  using __node_alloc_traits =
150  typename __hashtable_alloc::__node_alloc_traits;
151 
152  public:
153  using __node_type = typename __hashtable_alloc::__node_type;
154 
155  _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
156  : _M_nodes(__nodes), _M_h(__h) { }
157  _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
158 
159  ~_ReuseOrAllocNode()
160  { _M_h._M_deallocate_nodes(_M_nodes); }
161 
162  template<typename... _Args>
163  __node_type*
164  operator()(_Args&&... __args) const
165  {
166  if (_M_nodes)
167  {
168  __node_type* __node = _M_nodes;
169  _M_nodes = _M_nodes->_M_next();
170  __node->_M_nxt = nullptr;
171  auto& __a = _M_h._M_node_allocator();
172  __node_alloc_traits::destroy(__a, __node->_M_valptr());
173  __try
174  {
175  __node_alloc_traits::construct(__a, __node->_M_valptr(),
176  std::forward<_Args>(__args)...);
177  }
178  __catch(...)
179  {
180  _M_h._M_deallocate_node_ptr(__node);
181  __throw_exception_again;
182  }
183  return __node;
184  }
185  return _M_h._M_allocate_node(std::forward<_Args>(__args)...);
186  }
187 
188  private:
189  mutable __node_type* _M_nodes;
190  __hashtable_alloc& _M_h;
191  };
192 
193  // Functor similar to the previous one but without any pool of nodes to
194  // recycle.
195  template<typename _NodeAlloc>
196  struct _AllocNode
197  {
198  private:
199  using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
200 
201  public:
202  using __node_type = typename __hashtable_alloc::__node_type;
203 
204  _AllocNode(__hashtable_alloc& __h)
205  : _M_h(__h) { }
206 
207  template<typename... _Args>
208  __node_type*
209  operator()(_Args&&... __args) const
210  { return _M_h._M_allocate_node(std::forward<_Args>(__args)...); }
211 
212  private:
213  __hashtable_alloc& _M_h;
214  };
215 
216  // Auxiliary types used for all instantiations of _Hashtable nodes
217  // and iterators.
218 
219  /**
220  * struct _Hashtable_traits
221  *
222  * Important traits for hash tables.
223  *
224  * @tparam _Cache_hash_code Boolean value. True if the value of
225  * the hash function is stored along with the value. This is a
226  * time-space tradeoff. Storing it may improve lookup speed by
227  * reducing the number of times we need to call the _Hash or _Equal
228  * functors.
229  *
230  * @tparam _Constant_iterators Boolean value. True if iterator and
231  * const_iterator are both constant iterator types. This is true
232  * for unordered_set and unordered_multiset, false for
233  * unordered_map and unordered_multimap.
234  *
235  * @tparam _Unique_keys Boolean value. True if the return value
236  * of _Hashtable::count(k) is always at most one, false if it may
237  * be an arbitrary number. This is true for unordered_set and
238  * unordered_map, false for unordered_multiset and
239  * unordered_multimap.
240  */
241  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
242  struct _Hashtable_traits
243  {
244  using __hash_cached = __bool_constant<_Cache_hash_code>;
245  using __constant_iterators = __bool_constant<_Constant_iterators>;
246  using __unique_keys = __bool_constant<_Unique_keys>;
247  };
248 
249  /**
250  * struct _Hashtable_hash_traits
251  *
252  * Important traits for hash tables depending on associated hasher.
253  *
254  */
255  template<typename _Hash>
256  struct _Hashtable_hash_traits
257  {
258  static constexpr std::size_t
259  __small_size_threshold() noexcept
260  { return std::__is_fast_hash<_Hash>::value ? 0 : 20; }
261  };
262 
263  /**
264  * struct _Hash_node_base
265  *
266  * Nodes, used to wrap elements stored in the hash table. A policy
267  * template parameter of class template _Hashtable controls whether
268  * nodes also store a hash code. In some cases (e.g. strings) this
269  * may be a performance win.
270  */
271  struct _Hash_node_base
272  {
273  _Hash_node_base* _M_nxt;
274 
275  _Hash_node_base() noexcept : _M_nxt() { }
276 
277  _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
278  };
279 
280  /**
281  * struct _Hash_node_value_base
282  *
283  * Node type with the value to store.
284  */
285  template<typename _Value>
286  struct _Hash_node_value_base
287  {
288  typedef _Value value_type;
289 
290  __gnu_cxx::__aligned_buffer<_Value> _M_storage;
291 
292  _Value*
293  _M_valptr() noexcept
294  { return _M_storage._M_ptr(); }
295 
296  const _Value*
297  _M_valptr() const noexcept
298  { return _M_storage._M_ptr(); }
299 
300  _Value&
301  _M_v() noexcept
302  { return *_M_valptr(); }
303 
304  const _Value&
305  _M_v() const noexcept
306  { return *_M_valptr(); }
307  };
308 
309  /**
310  * Primary template struct _Hash_node_code_cache.
311  */
312  template<bool _Cache_hash_code>
313  struct _Hash_node_code_cache
314  { };
315 
316  /**
317  * Specialization for node with cache, struct _Hash_node_code_cache.
318  */
319  template<>
320  struct _Hash_node_code_cache<true>
321  { std::size_t _M_hash_code; };
322 
323  template<typename _Value, bool _Cache_hash_code>
324  struct _Hash_node_value
325  : _Hash_node_value_base<_Value>
326  , _Hash_node_code_cache<_Cache_hash_code>
327  { };
328 
329  /**
330  * Primary template struct _Hash_node.
331  */
332  template<typename _Value, bool _Cache_hash_code>
333  struct _Hash_node
334  : _Hash_node_base
335  , _Hash_node_value<_Value, _Cache_hash_code>
336  {
337  _Hash_node*
338  _M_next() const noexcept
339  { return static_cast<_Hash_node*>(this->_M_nxt); }
340  };
341 
342  /// Base class for node iterators.
343  template<typename _Value, bool _Cache_hash_code>
344  struct _Node_iterator_base
345  {
346  using __node_type = _Hash_node<_Value, _Cache_hash_code>;
347 
348  __node_type* _M_cur;
349 
350  _Node_iterator_base() : _M_cur(nullptr) { }
351  _Node_iterator_base(__node_type* __p) noexcept
352  : _M_cur(__p) { }
353 
354  void
355  _M_incr() noexcept
356  { _M_cur = _M_cur->_M_next(); }
357 
358  friend bool
359  operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y)
360  noexcept
361  { return __x._M_cur == __y._M_cur; }
362 
363 #if __cpp_impl_three_way_comparison < 201907L
364  friend bool
365  operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y)
366  noexcept
367  { return __x._M_cur != __y._M_cur; }
368 #endif
369  };
370 
371  /// Node iterators, used to iterate through all the hashtable.
372  template<typename _Value, bool __constant_iterators, bool __cache>
373  struct _Node_iterator
374  : public _Node_iterator_base<_Value, __cache>
375  {
376  private:
377  using __base_type = _Node_iterator_base<_Value, __cache>;
378  using __node_type = typename __base_type::__node_type;
379 
380  public:
381  using value_type = _Value;
382  using difference_type = std::ptrdiff_t;
383  using iterator_category = std::forward_iterator_tag;
384 
385  using pointer = __conditional_t<__constant_iterators,
386  const value_type*, value_type*>;
387 
388  using reference = __conditional_t<__constant_iterators,
389  const value_type&, value_type&>;
390 
391  _Node_iterator() = default;
392 
393  explicit
394  _Node_iterator(__node_type* __p) noexcept
395  : __base_type(__p) { }
396 
397  reference
398  operator*() const noexcept
399  { return this->_M_cur->_M_v(); }
400 
401  pointer
402  operator->() const noexcept
403  { return this->_M_cur->_M_valptr(); }
404 
405  _Node_iterator&
406  operator++() noexcept
407  {
408  this->_M_incr();
409  return *this;
410  }
411 
412  _Node_iterator
413  operator++(int) noexcept
414  {
415  _Node_iterator __tmp(*this);
416  this->_M_incr();
417  return __tmp;
418  }
419  };
420 
421  /// Node const_iterators, used to iterate through all the hashtable.
422  template<typename _Value, bool __constant_iterators, bool __cache>
423  struct _Node_const_iterator
424  : public _Node_iterator_base<_Value, __cache>
425  {
426  private:
427  using __base_type = _Node_iterator_base<_Value, __cache>;
428  using __node_type = typename __base_type::__node_type;
429 
430  public:
431  typedef _Value value_type;
432  typedef std::ptrdiff_t difference_type;
433  typedef std::forward_iterator_tag iterator_category;
434 
435  typedef const value_type* pointer;
436  typedef const value_type& reference;
437 
438  _Node_const_iterator() = default;
439 
440  explicit
441  _Node_const_iterator(__node_type* __p) noexcept
442  : __base_type(__p) { }
443 
444  _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
445  __cache>& __x) noexcept
446  : __base_type(__x._M_cur) { }
447 
448  reference
449  operator*() const noexcept
450  { return this->_M_cur->_M_v(); }
451 
452  pointer
453  operator->() const noexcept
454  { return this->_M_cur->_M_valptr(); }
455 
456  _Node_const_iterator&
457  operator++() noexcept
458  {
459  this->_M_incr();
460  return *this;
461  }
462 
463  _Node_const_iterator
464  operator++(int) noexcept
465  {
466  _Node_const_iterator __tmp(*this);
467  this->_M_incr();
468  return __tmp;
469  }
470  };
471 
472  // Many of class template _Hashtable's template parameters are policy
473  // classes. These are defaults for the policies.
474 
475  /// Default range hashing function: use division to fold a large number
476  /// into the range [0, N).
477  struct _Mod_range_hashing
478  {
479  typedef std::size_t first_argument_type;
480  typedef std::size_t second_argument_type;
481  typedef std::size_t result_type;
482 
483  result_type
484  operator()(first_argument_type __num,
485  second_argument_type __den) const noexcept
486  { return __num % __den; }
487  };
488 
489  /// Default ranged hash function H. In principle it should be a
490  /// function object composed from objects of type H1 and H2 such that
491  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
492  /// h1 and h2. So instead we'll just use a tag to tell class template
493  /// hashtable to do that composition.
494  struct _Default_ranged_hash { };
495 
496  /// Default value for rehash policy. Bucket size is (usually) the
497  /// smallest prime that keeps the load factor small enough.
498  struct _Prime_rehash_policy
499  {
500  using __has_load_factor = true_type;
501 
502  _Prime_rehash_policy(float __z = 1.0) noexcept
503  : _M_max_load_factor(__z), _M_next_resize(0) { }
504 
505  float
506  max_load_factor() const noexcept
507  { return _M_max_load_factor; }
508 
509  // Return a bucket size no smaller than n.
510  std::size_t
511  _M_next_bkt(std::size_t __n) const;
512 
513  // Return a bucket count appropriate for n elements
514  std::size_t
515  _M_bkt_for_elements(std::size_t __n) const
516  { return __builtin_ceil(__n / (double)_M_max_load_factor); }
517 
518  // __n_bkt is current bucket count, __n_elt is current element count,
519  // and __n_ins is number of elements to be inserted. Do we need to
520  // increase bucket count? If so, return make_pair(true, n), where n
521  // is the new bucket count. If not, return make_pair(false, 0).
523  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
524  std::size_t __n_ins) const;
525 
526  typedef std::size_t _State;
527 
528  _State
529  _M_state() const
530  { return _M_next_resize; }
531 
532  void
533  _M_reset() noexcept
534  { _M_next_resize = 0; }
535 
536  void
537  _M_reset(_State __state)
538  { _M_next_resize = __state; }
539 
540  static const std::size_t _S_growth_factor = 2;
541 
542  float _M_max_load_factor;
543  mutable std::size_t _M_next_resize;
544  };
545 
546  /// Range hashing function assuming that second arg is a power of 2.
547  struct _Mask_range_hashing
548  {
549  typedef std::size_t first_argument_type;
550  typedef std::size_t second_argument_type;
551  typedef std::size_t result_type;
552 
553  result_type
554  operator()(first_argument_type __num,
555  second_argument_type __den) const noexcept
556  { return __num & (__den - 1); }
557  };
558 
559  /// Compute closest power of 2 not less than __n
560  inline std::size_t
561  __clp2(std::size_t __n) noexcept
562  {
564  // Equivalent to return __n ? std::bit_ceil(__n) : 0;
565  if (__n < 2)
566  return __n;
567  const unsigned __lz = sizeof(size_t) > sizeof(long)
568  ? __builtin_clzll(__n - 1ull)
569  : __builtin_clzl(__n - 1ul);
570  // Doing two shifts avoids undefined behaviour when __lz == 0.
571  return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1;
572  }
573 
574  /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
575  /// operations.
576  struct _Power2_rehash_policy
577  {
578  using __has_load_factor = true_type;
579 
580  _Power2_rehash_policy(float __z = 1.0) noexcept
581  : _M_max_load_factor(__z), _M_next_resize(0) { }
582 
583  float
584  max_load_factor() const noexcept
585  { return _M_max_load_factor; }
586 
587  // Return a bucket size no smaller than n (as long as n is not above the
588  // highest power of 2).
589  std::size_t
590  _M_next_bkt(std::size_t __n) noexcept
591  {
592  if (__n == 0)
593  // Special case on container 1st initialization with 0 bucket count
594  // hint. We keep _M_next_resize to 0 to make sure that next time we
595  // want to add an element allocation will take place.
596  return 1;
597 
598  const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
599  const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
600  std::size_t __res = __clp2(__n);
601 
602  if (__res == 0)
603  __res = __max_bkt;
604  else if (__res == 1)
605  // If __res is 1 we force it to 2 to make sure there will be an
606  // allocation so that nothing need to be stored in the initial
607  // single bucket
608  __res = 2;
609 
610  if (__res == __max_bkt)
611  // Set next resize to the max value so that we never try to rehash again
612  // as we already reach the biggest possible bucket number.
613  // Note that it might result in max_load_factor not being respected.
614  _M_next_resize = size_t(-1);
615  else
616  _M_next_resize
617  = __builtin_floor(__res * (double)_M_max_load_factor);
618 
619  return __res;
620  }
621 
622  // Return a bucket count appropriate for n elements
623  std::size_t
624  _M_bkt_for_elements(std::size_t __n) const noexcept
625  { return __builtin_ceil(__n / (double)_M_max_load_factor); }
626 
627  // __n_bkt is current bucket count, __n_elt is current element count,
628  // and __n_ins is number of elements to be inserted. Do we need to
629  // increase bucket count? If so, return make_pair(true, n), where n
630  // is the new bucket count. If not, return make_pair(false, 0).
632  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
633  std::size_t __n_ins) noexcept
634  {
635  if (__n_elt + __n_ins > _M_next_resize)
636  {
637  // If _M_next_resize is 0 it means that we have nothing allocated so
638  // far and that we start inserting elements. In this case we start
639  // with an initial bucket size of 11.
640  double __min_bkts
641  = std::max<std::size_t>(__n_elt + __n_ins, _M_next_resize ? 0 : 11)
642  / (double)_M_max_load_factor;
643  if (__min_bkts >= __n_bkt)
644  return { true,
645  _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
646  __n_bkt * _S_growth_factor)) };
647 
648  _M_next_resize
649  = __builtin_floor(__n_bkt * (double)_M_max_load_factor);
650  return { false, 0 };
651  }
652  else
653  return { false, 0 };
654  }
655 
656  typedef std::size_t _State;
657 
658  _State
659  _M_state() const noexcept
660  { return _M_next_resize; }
661 
662  void
663  _M_reset() noexcept
664  { _M_next_resize = 0; }
665 
666  void
667  _M_reset(_State __state) noexcept
668  { _M_next_resize = __state; }
669 
670  static const std::size_t _S_growth_factor = 2;
671 
672  float _M_max_load_factor;
673  std::size_t _M_next_resize;
674  };
675 
676  // Base classes for std::_Hashtable. We define these base classes
677  // because in some cases we want to do different things depending on
678  // the value of a policy class. In some cases the policy class
679  // affects which member functions and nested typedefs are defined;
680  // we handle that by specializing base class templates. Several of
681  // the base class templates need to access other members of class
682  // template _Hashtable, so we use a variant of the "Curiously
683  // Recurring Template Pattern" (CRTP) technique.
684 
685  /**
686  * Primary class template _Map_base.
687  *
688  * If the hashtable has a value type of the form pair<const T1, T2> and
689  * a key extraction policy (_ExtractKey) that returns the first part
690  * of the pair, the hashtable gets a mapped_type typedef. If it
691  * satisfies those criteria and also has unique keys, then it also
692  * gets an operator[].
693  */
694  template<typename _Key, typename _Value, typename _Alloc,
695  typename _ExtractKey, typename _Equal,
696  typename _Hash, typename _RangeHash, typename _Unused,
697  typename _RehashPolicy, typename _Traits,
698  bool _Unique_keys = _Traits::__unique_keys::value>
699  struct _Map_base { };
700 
701  /// Partial specialization, __unique_keys set to false, std::pair value type.
702  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
703  typename _Hash, typename _RangeHash, typename _Unused,
704  typename _RehashPolicy, typename _Traits>
705  struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
706  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
707  {
708  using mapped_type = _Val;
709  };
710 
711  /// Partial specialization, __unique_keys set to true.
712  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
713  typename _Hash, typename _RangeHash, typename _Unused,
714  typename _RehashPolicy, typename _Traits>
715  struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
716  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>
717  {
718  private:
719  using __hashtable_base = _Hashtable_base<_Key, pair<const _Key, _Val>,
720  _Select1st, _Equal, _Hash,
721  _RangeHash, _Unused,
722  _Traits>;
723 
724  using __hashtable = _Hashtable<_Key, pair<const _Key, _Val>, _Alloc,
725  _Select1st, _Equal, _Hash, _RangeHash,
726  _Unused, _RehashPolicy, _Traits>;
727 
728  using __hash_code = typename __hashtable_base::__hash_code;
729 
730  public:
731  using key_type = typename __hashtable_base::key_type;
732  using mapped_type = _Val;
733 
734  mapped_type&
735  operator[](const key_type& __k);
736 
737  mapped_type&
738  operator[](key_type&& __k);
739 
740  // _GLIBCXX_RESOLVE_LIB_DEFECTS
741  // DR 761. unordered_map needs an at() member function.
742  mapped_type&
743  at(const key_type& __k)
744  {
745  auto __ite = static_cast<__hashtable*>(this)->find(__k);
746  if (!__ite._M_cur)
747  __throw_out_of_range(__N("unordered_map::at"));
748  return __ite->second;
749  }
750 
751  const mapped_type&
752  at(const key_type& __k) const
753  {
754  auto __ite = static_cast<const __hashtable*>(this)->find(__k);
755  if (!__ite._M_cur)
756  __throw_out_of_range(__N("unordered_map::at"));
757  return __ite->second;
758  }
759  };
760 
761  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
762  typename _Hash, typename _RangeHash, typename _Unused,
763  typename _RehashPolicy, typename _Traits>
764  auto
765  _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
766  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
767  operator[](const key_type& __k)
768  -> mapped_type&
769  {
770  __hashtable* __h = static_cast<__hashtable*>(this);
771  __hash_code __code = __h->_M_hash_code(__k);
772  std::size_t __bkt = __h->_M_bucket_index(__code);
773  if (auto __node = __h->_M_find_node(__bkt, __k, __code))
774  return __node->_M_v().second;
775 
776  typename __hashtable::_Scoped_node __node {
777  __h,
780  std::tuple<>()
781  };
782  auto __pos
783  = __h->_M_insert_unique_node(__bkt, __code, __node._M_node);
784  __node._M_node = nullptr;
785  return __pos->second;
786  }
787 
788  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
789  typename _Hash, typename _RangeHash, typename _Unused,
790  typename _RehashPolicy, typename _Traits>
791  auto
792  _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
793  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
794  operator[](key_type&& __k)
795  -> mapped_type&
796  {
797  __hashtable* __h = static_cast<__hashtable*>(this);
798  __hash_code __code = __h->_M_hash_code(__k);
799  std::size_t __bkt = __h->_M_bucket_index(__code);
800  if (auto __node = __h->_M_find_node(__bkt, __k, __code))
801  return __node->_M_v().second;
802 
803  typename __hashtable::_Scoped_node __node {
804  __h,
807  std::tuple<>()
808  };
809  auto __pos
810  = __h->_M_insert_unique_node(__bkt, __code, __node._M_node);
811  __node._M_node = nullptr;
812  return __pos->second;
813  }
814 
815  // Partial specialization for unordered_map<const T, U>, see PR 104174.
816  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
817  typename _Hash, typename _RangeHash, typename _Unused,
818  typename _RehashPolicy, typename _Traits, bool __uniq>
819  struct _Map_base<const _Key, pair<const _Key, _Val>,
820  _Alloc, _Select1st, _Equal, _Hash,
821  _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq>
822  : _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, _Hash,
823  _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq>
824  { };
825 
826  /**
827  * Primary class template _Insert_base.
828  *
829  * Defines @c insert member functions appropriate to all _Hashtables.
830  */
831  template<typename _Key, typename _Value, typename _Alloc,
832  typename _ExtractKey, typename _Equal,
833  typename _Hash, typename _RangeHash, typename _Unused,
834  typename _RehashPolicy, typename _Traits>
835  struct _Insert_base
836  {
837  protected:
838  using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
839  _Equal, _Hash, _RangeHash,
840  _Unused, _Traits>;
841 
842  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
843  _Hash, _RangeHash,
844  _Unused, _RehashPolicy, _Traits>;
845 
846  using __hash_cached = typename _Traits::__hash_cached;
847  using __constant_iterators = typename _Traits::__constant_iterators;
848 
849  using __hashtable_alloc = _Hashtable_alloc<
850  __alloc_rebind<_Alloc, _Hash_node<_Value,
851  __hash_cached::value>>>;
852 
853  using value_type = typename __hashtable_base::value_type;
854  using size_type = typename __hashtable_base::size_type;
855 
856  using __unique_keys = typename _Traits::__unique_keys;
857  using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type;
858  using __node_gen_type = _AllocNode<__node_alloc_type>;
859 
860  __hashtable&
861  _M_conjure_hashtable()
862  { return *(static_cast<__hashtable*>(this)); }
863 
864  template<typename _InputIterator, typename _NodeGetter>
865  void
866  _M_insert_range(_InputIterator __first, _InputIterator __last,
867  const _NodeGetter&, true_type __uks);
868 
869  template<typename _InputIterator, typename _NodeGetter>
870  void
871  _M_insert_range(_InputIterator __first, _InputIterator __last,
872  const _NodeGetter&, false_type __uks);
873 
874  public:
875  using iterator = _Node_iterator<_Value, __constant_iterators::value,
876  __hash_cached::value>;
877 
878  using const_iterator = _Node_const_iterator<_Value,
879  __constant_iterators::value,
880  __hash_cached::value>;
881 
882  using __ireturn_type = __conditional_t<__unique_keys::value,
884  iterator>;
885 
886  __ireturn_type
887  insert(const value_type& __v)
888  {
889  __hashtable& __h = _M_conjure_hashtable();
890  __node_gen_type __node_gen(__h);
891  return __h._M_insert(__v, __node_gen, __unique_keys{});
892  }
893 
894  iterator
895  insert(const_iterator __hint, const value_type& __v)
896  {
897  __hashtable& __h = _M_conjure_hashtable();
898  __node_gen_type __node_gen(__h);
899  return __h._M_insert(__hint, __v, __node_gen, __unique_keys{});
900  }
901 
902  template<typename _KType, typename... _Args>
904  try_emplace(const_iterator, _KType&& __k, _Args&&... __args)
905  {
906  __hashtable& __h = _M_conjure_hashtable();
907  auto __code = __h._M_hash_code(__k);
908  std::size_t __bkt = __h._M_bucket_index(__code);
909  if (auto __node = __h._M_find_node(__bkt, __k, __code))
910  return { iterator(__node), false };
911 
912  typename __hashtable::_Scoped_node __node {
913  &__h,
915  std::forward_as_tuple(std::forward<_KType>(__k)),
916  std::forward_as_tuple(std::forward<_Args>(__args)...)
917  };
918  auto __it
919  = __h._M_insert_unique_node(__bkt, __code, __node._M_node);
920  __node._M_node = nullptr;
921  return { __it, true };
922  }
923 
924  void
925  insert(initializer_list<value_type> __l)
926  { this->insert(__l.begin(), __l.end()); }
927 
928  template<typename _InputIterator>
929  void
930  insert(_InputIterator __first, _InputIterator __last)
931  {
932  __hashtable& __h = _M_conjure_hashtable();
933  __node_gen_type __node_gen(__h);
934  return _M_insert_range(__first, __last, __node_gen, __unique_keys{});
935  }
936  };
937 
938  template<typename _Key, typename _Value, typename _Alloc,
939  typename _ExtractKey, typename _Equal,
940  typename _Hash, typename _RangeHash, typename _Unused,
941  typename _RehashPolicy, typename _Traits>
942  template<typename _InputIterator, typename _NodeGetter>
943  void
944  _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
945  _Hash, _RangeHash, _Unused,
946  _RehashPolicy, _Traits>::
947  _M_insert_range(_InputIterator __first, _InputIterator __last,
948  const _NodeGetter& __node_gen, true_type __uks)
949  {
950  __hashtable& __h = _M_conjure_hashtable();
951  for (; __first != __last; ++__first)
952  __h._M_insert(*__first, __node_gen, __uks);
953  }
954 
955  template<typename _Key, typename _Value, typename _Alloc,
956  typename _ExtractKey, typename _Equal,
957  typename _Hash, typename _RangeHash, typename _Unused,
958  typename _RehashPolicy, typename _Traits>
959  template<typename _InputIterator, typename _NodeGetter>
960  void
961  _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
962  _Hash, _RangeHash, _Unused,
963  _RehashPolicy, _Traits>::
964  _M_insert_range(_InputIterator __first, _InputIterator __last,
965  const _NodeGetter& __node_gen, false_type __uks)
966  {
967  using __rehash_type = typename __hashtable::__rehash_type;
968  using __rehash_state = typename __hashtable::__rehash_state;
969  using pair_type = std::pair<bool, std::size_t>;
970 
971  size_type __n_elt = __detail::__distance_fw(__first, __last);
972  if (__n_elt == 0)
973  return;
974 
975  __hashtable& __h = _M_conjure_hashtable();
976  __rehash_type& __rehash = __h._M_rehash_policy;
977  const __rehash_state& __saved_state = __rehash._M_state();
978  pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
979  __h._M_element_count,
980  __n_elt);
981 
982  if (__do_rehash.first)
983  __h._M_rehash(__do_rehash.second, __saved_state);
984 
985  for (; __first != __last; ++__first)
986  __h._M_insert(*__first, __node_gen, __uks);
987  }
988 
989  /**
990  * Primary class template _Insert.
991  *
992  * Defines @c insert member functions that depend on _Hashtable policies,
993  * via partial specializations.
994  */
995  template<typename _Key, typename _Value, typename _Alloc,
996  typename _ExtractKey, typename _Equal,
997  typename _Hash, typename _RangeHash, typename _Unused,
998  typename _RehashPolicy, typename _Traits,
999  bool _Constant_iterators = _Traits::__constant_iterators::value>
1000  struct _Insert;
1001 
1002  /// Specialization.
1003  template<typename _Key, typename _Value, typename _Alloc,
1004  typename _ExtractKey, typename _Equal,
1005  typename _Hash, typename _RangeHash, typename _Unused,
1006  typename _RehashPolicy, typename _Traits>
1007  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1008  _Hash, _RangeHash, _Unused,
1009  _RehashPolicy, _Traits, true>
1010  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1011  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>
1012  {
1013  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
1014  _Equal, _Hash, _RangeHash, _Unused,
1015  _RehashPolicy, _Traits>;
1016 
1017  using value_type = typename __base_type::value_type;
1018  using iterator = typename __base_type::iterator;
1019  using const_iterator = typename __base_type::const_iterator;
1020  using __ireturn_type = typename __base_type::__ireturn_type;
1021 
1022  using __unique_keys = typename __base_type::__unique_keys;
1023  using __hashtable = typename __base_type::__hashtable;
1024  using __node_gen_type = typename __base_type::__node_gen_type;
1025 
1026  using __base_type::insert;
1027 
1028  __ireturn_type
1029  insert(value_type&& __v)
1030  {
1031  __hashtable& __h = this->_M_conjure_hashtable();
1032  __node_gen_type __node_gen(__h);
1033  return __h._M_insert(std::move(__v), __node_gen, __unique_keys{});
1034  }
1035 
1036  iterator
1037  insert(const_iterator __hint, value_type&& __v)
1038  {
1039  __hashtable& __h = this->_M_conjure_hashtable();
1040  __node_gen_type __node_gen(__h);
1041  return __h._M_insert(__hint, std::move(__v), __node_gen,
1042  __unique_keys{});
1043  }
1044  };
1045 
1046  /// Specialization.
1047  template<typename _Key, typename _Value, typename _Alloc,
1048  typename _ExtractKey, typename _Equal,
1049  typename _Hash, typename _RangeHash, typename _Unused,
1050  typename _RehashPolicy, typename _Traits>
1051  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1052  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
1053  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1054  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>
1055  {
1056  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
1057  _Equal, _Hash, _RangeHash, _Unused,
1058  _RehashPolicy, _Traits>;
1059  using value_type = typename __base_type::value_type;
1060  using iterator = typename __base_type::iterator;
1061  using const_iterator = typename __base_type::const_iterator;
1062 
1063  using __unique_keys = typename __base_type::__unique_keys;
1064  using __hashtable = typename __base_type::__hashtable;
1065  using __ireturn_type = typename __base_type::__ireturn_type;
1066 
1067  using __base_type::insert;
1068 
1069  template<typename _Pair>
1071 
1072  template<typename _Pair>
1073  using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
1074 
1075  template<typename _Pair>
1076  using _IFconsp = typename _IFcons<_Pair>::type;
1077 
1078  template<typename _Pair, typename = _IFconsp<_Pair>>
1079  __ireturn_type
1080  insert(_Pair&& __v)
1081  {
1082  __hashtable& __h = this->_M_conjure_hashtable();
1083  return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v));
1084  }
1085 
1086  template<typename _Pair, typename = _IFconsp<_Pair>>
1087  iterator
1088  insert(const_iterator __hint, _Pair&& __v)
1089  {
1090  __hashtable& __h = this->_M_conjure_hashtable();
1091  return __h._M_emplace(__hint, __unique_keys{},
1092  std::forward<_Pair>(__v));
1093  }
1094  };
1095 
1096  template<typename _Policy>
1097  using __has_load_factor = typename _Policy::__has_load_factor;
1098 
1099  /**
1100  * Primary class template _Rehash_base.
1101  *
1102  * Give hashtable the max_load_factor functions and reserve iff the
1103  * rehash policy supports it.
1104  */
1105  template<typename _Key, typename _Value, typename _Alloc,
1106  typename _ExtractKey, typename _Equal,
1107  typename _Hash, typename _RangeHash, typename _Unused,
1108  typename _RehashPolicy, typename _Traits,
1109  typename =
1110  __detected_or_t<false_type, __has_load_factor, _RehashPolicy>>
1111  struct _Rehash_base;
1112 
1113  /// Specialization when rehash policy doesn't provide load factor management.
1114  template<typename _Key, typename _Value, typename _Alloc,
1115  typename _ExtractKey, typename _Equal,
1116  typename _Hash, typename _RangeHash, typename _Unused,
1117  typename _RehashPolicy, typename _Traits>
1118  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1119  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits,
1120  false_type /* Has load factor */>
1121  {
1122  };
1123 
1124  /// Specialization when rehash policy provide load factor management.
1125  template<typename _Key, typename _Value, typename _Alloc,
1126  typename _ExtractKey, typename _Equal,
1127  typename _Hash, typename _RangeHash, typename _Unused,
1128  typename _RehashPolicy, typename _Traits>
1129  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1130  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits,
1131  true_type /* Has load factor */>
1132  {
1133  private:
1134  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1135  _Equal, _Hash, _RangeHash, _Unused,
1136  _RehashPolicy, _Traits>;
1137 
1138  public:
1139  float
1140  max_load_factor() const noexcept
1141  {
1142  const __hashtable* __this = static_cast<const __hashtable*>(this);
1143  return __this->__rehash_policy().max_load_factor();
1144  }
1145 
1146  void
1147  max_load_factor(float __z)
1148  {
1149  __hashtable* __this = static_cast<__hashtable*>(this);
1150  __this->__rehash_policy(_RehashPolicy(__z));
1151  }
1152 
1153  void
1154  reserve(std::size_t __n)
1155  {
1156  __hashtable* __this = static_cast<__hashtable*>(this);
1157  __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n));
1158  }
1159  };
1160 
1161  /**
1162  * Primary class template _Hashtable_ebo_helper.
1163  *
1164  * Helper class using EBO when it is not forbidden (the type is not
1165  * final) and when it is worth it (the type is empty.)
1166  */
1167  template<int _Nm, typename _Tp,
1168  bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1169  struct _Hashtable_ebo_helper;
1170 
1171  /// Specialization using EBO.
1172  template<int _Nm, typename _Tp>
1173  struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1174  : private _Tp
1175  {
1176  _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { }
1177 
1178  template<typename _OtherTp>
1179  _Hashtable_ebo_helper(_OtherTp&& __tp)
1180  : _Tp(std::forward<_OtherTp>(__tp))
1181  { }
1182 
1183  const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); }
1184  _Tp& _M_get() { return static_cast<_Tp&>(*this); }
1185  };
1186 
1187  /// Specialization not using EBO.
1188  template<int _Nm, typename _Tp>
1189  struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1190  {
1191  _Hashtable_ebo_helper() = default;
1192 
1193  template<typename _OtherTp>
1194  _Hashtable_ebo_helper(_OtherTp&& __tp)
1195  : _M_tp(std::forward<_OtherTp>(__tp))
1196  { }
1197 
1198  const _Tp& _M_cget() const { return _M_tp; }
1199  _Tp& _M_get() { return _M_tp; }
1200 
1201  private:
1202  _Tp _M_tp{};
1203  };
1204 
1205  /**
1206  * Primary class template _Local_iterator_base.
1207  *
1208  * Base class for local iterators, used to iterate within a bucket
1209  * but not between buckets.
1210  */
1211  template<typename _Key, typename _Value, typename _ExtractKey,
1212  typename _Hash, typename _RangeHash, typename _Unused,
1213  bool __cache_hash_code>
1214  struct _Local_iterator_base;
1215 
1216  /**
1217  * Primary class template _Hash_code_base.
1218  *
1219  * Encapsulates two policy issues that aren't quite orthogonal.
1220  * (1) the difference between using a ranged hash function and using
1221  * the combination of a hash function and a range-hashing function.
1222  * In the former case we don't have such things as hash codes, so
1223  * we have a dummy type as placeholder.
1224  * (2) Whether or not we cache hash codes. Caching hash codes is
1225  * meaningless if we have a ranged hash function.
1226  *
1227  * We also put the key extraction objects here, for convenience.
1228  * Each specialization derives from one or more of the template
1229  * parameters to benefit from Ebo. This is important as this type
1230  * is inherited in some cases by the _Local_iterator_base type used
1231  * to implement local_iterator and const_local_iterator. As with
1232  * any iterator type we prefer to make it as small as possible.
1233  */
1234  template<typename _Key, typename _Value, typename _ExtractKey,
1235  typename _Hash, typename _RangeHash, typename _Unused,
1236  bool __cache_hash_code>
1237  struct _Hash_code_base
1238  : private _Hashtable_ebo_helper<1, _Hash>
1239  {
1240  private:
1241  using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1242 
1243  // Gives the local iterator implementation access to _M_bucket_index().
1244  friend struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1245  _Hash, _RangeHash, _Unused, false>;
1246 
1247  public:
1248  typedef _Hash hasher;
1249 
1250  hasher
1251  hash_function() const
1252  { return _M_hash(); }
1253 
1254  protected:
1255  typedef std::size_t __hash_code;
1256 
1257  // We need the default constructor for the local iterators and _Hashtable
1258  // default constructor.
1259  _Hash_code_base() = default;
1260 
1261  _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { }
1262 
1263  __hash_code
1264  _M_hash_code(const _Key& __k) const
1265  {
1266  static_assert(__is_invocable<const _Hash&, const _Key&>{},
1267  "hash function must be invocable with an argument of key type");
1268  return _M_hash()(__k);
1269  }
1270 
1271  template<typename _Kt>
1272  __hash_code
1273  _M_hash_code_tr(const _Kt& __k) const
1274  {
1275  static_assert(__is_invocable<const _Hash&, const _Kt&>{},
1276  "hash function must be invocable with an argument of key type");
1277  return _M_hash()(__k);
1278  }
1279 
1280  __hash_code
1281  _M_hash_code(const _Hash&,
1282  const _Hash_node_value<_Value, true>& __n) const
1283  { return __n._M_hash_code; }
1284 
1285  // Compute hash code using _Hash as __n _M_hash_code, if present, was
1286  // computed using _H2.
1287  template<typename _H2>
1288  __hash_code
1289  _M_hash_code(const _H2&,
1290  const _Hash_node_value<_Value, __cache_hash_code>& __n) const
1291  { return _M_hash_code(_ExtractKey{}(__n._M_v())); }
1292 
1293  __hash_code
1294  _M_hash_code(const _Hash_node_value<_Value, false>& __n) const
1295  { return _M_hash_code(_ExtractKey{}(__n._M_v())); }
1296 
1297  __hash_code
1298  _M_hash_code(const _Hash_node_value<_Value, true>& __n) const
1299  { return __n._M_hash_code; }
1300 
1301  std::size_t
1302  _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const
1303  { return _RangeHash{}(__c, __bkt_count); }
1304 
1305  std::size_t
1306  _M_bucket_index(const _Hash_node_value<_Value, false>& __n,
1307  std::size_t __bkt_count) const
1308  noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>()))
1309  && noexcept(declval<const _RangeHash&>()((__hash_code)0,
1310  (std::size_t)0)) )
1311  {
1312  return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())),
1313  __bkt_count);
1314  }
1315 
1316  std::size_t
1317  _M_bucket_index(const _Hash_node_value<_Value, true>& __n,
1318  std::size_t __bkt_count) const
1319  noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0,
1320  (std::size_t)0)) )
1321  { return _RangeHash{}(__n._M_hash_code, __bkt_count); }
1322 
1323  void
1324  _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const
1325  { }
1326 
1327  void
1328  _M_copy_code(_Hash_node_code_cache<false>&,
1329  const _Hash_node_code_cache<false>&) const
1330  { }
1331 
1332  void
1333  _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const
1334  { __n._M_hash_code = __c; }
1335 
1336  void
1337  _M_copy_code(_Hash_node_code_cache<true>& __to,
1338  const _Hash_node_code_cache<true>& __from) const
1339  { __to._M_hash_code = __from._M_hash_code; }
1340 
1341  void
1342  _M_swap(_Hash_code_base& __x)
1343  { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); }
1344 
1345  const _Hash&
1346  _M_hash() const { return __ebo_hash::_M_cget(); }
1347  };
1348 
1349  /// Partial specialization used when nodes contain a cached hash code.
1350  template<typename _Key, typename _Value, typename _ExtractKey,
1351  typename _Hash, typename _RangeHash, typename _Unused>
1352  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1353  _Hash, _RangeHash, _Unused, true>
1354  : public _Node_iterator_base<_Value, true>
1355  {
1356  protected:
1357  using __base_node_iter = _Node_iterator_base<_Value, true>;
1358  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1359  _Hash, _RangeHash, _Unused, true>;
1360 
1361  _Local_iterator_base() = default;
1362  _Local_iterator_base(const __hash_code_base&,
1363  _Hash_node<_Value, true>* __p,
1364  std::size_t __bkt, std::size_t __bkt_count)
1365  : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1366  { }
1367 
1368  void
1369  _M_incr()
1370  {
1371  __base_node_iter::_M_incr();
1372  if (this->_M_cur)
1373  {
1374  std::size_t __bkt
1375  = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count);
1376  if (__bkt != _M_bucket)
1377  this->_M_cur = nullptr;
1378  }
1379  }
1380 
1381  std::size_t _M_bucket;
1382  std::size_t _M_bucket_count;
1383 
1384  public:
1385  std::size_t
1386  _M_get_bucket() const { return _M_bucket; } // for debug mode
1387  };
1388 
1389  // Uninitialized storage for a _Hash_code_base.
1390  // This type is DefaultConstructible and Assignable even if the
1391  // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1392  // can be DefaultConstructible and Assignable.
1393  template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1394  struct _Hash_code_storage
1395  {
1396  __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1397 
1398  _Tp*
1399  _M_h() { return _M_storage._M_ptr(); }
1400 
1401  const _Tp*
1402  _M_h() const { return _M_storage._M_ptr(); }
1403  };
1404 
1405  // Empty partial specialization for empty _Hash_code_base types.
1406  template<typename _Tp>
1407  struct _Hash_code_storage<_Tp, true>
1408  {
1409  static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1410 
1411  // As _Tp is an empty type there will be no bytes written/read through
1412  // the cast pointer, so no strict-aliasing violation.
1413  _Tp*
1414  _M_h() { return reinterpret_cast<_Tp*>(this); }
1415 
1416  const _Tp*
1417  _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1418  };
1419 
1420  template<typename _Key, typename _Value, typename _ExtractKey,
1421  typename _Hash, typename _RangeHash, typename _Unused>
1422  using __hash_code_for_local_iter
1423  = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1424  _Hash, _RangeHash, _Unused, false>>;
1425 
1426  // Partial specialization used when hash codes are not cached
1427  template<typename _Key, typename _Value, typename _ExtractKey,
1428  typename _Hash, typename _RangeHash, typename _Unused>
1429  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1430  _Hash, _RangeHash, _Unused, false>
1431  : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash,
1432  _Unused>
1433  , _Node_iterator_base<_Value, false>
1434  {
1435  protected:
1436  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1437  _Hash, _RangeHash, _Unused, false>;
1438  using __node_iter_base = _Node_iterator_base<_Value, false>;
1439 
1440  _Local_iterator_base() : _M_bucket_count(-1) { }
1441 
1442  _Local_iterator_base(const __hash_code_base& __base,
1443  _Hash_node<_Value, false>* __p,
1444  std::size_t __bkt, std::size_t __bkt_count)
1445  : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1446  { _M_init(__base); }
1447 
1448  ~_Local_iterator_base()
1449  {
1450  if (_M_bucket_count != size_t(-1))
1451  _M_destroy();
1452  }
1453 
1454  _Local_iterator_base(const _Local_iterator_base& __iter)
1455  : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket)
1456  , _M_bucket_count(__iter._M_bucket_count)
1457  {
1458  if (_M_bucket_count != size_t(-1))
1459  _M_init(*__iter._M_h());
1460  }
1461 
1462  _Local_iterator_base&
1463  operator=(const _Local_iterator_base& __iter)
1464  {
1465  if (_M_bucket_count != -1)
1466  _M_destroy();
1467  this->_M_cur = __iter._M_cur;
1468  _M_bucket = __iter._M_bucket;
1469  _M_bucket_count = __iter._M_bucket_count;
1470  if (_M_bucket_count != -1)
1471  _M_init(*__iter._M_h());
1472  return *this;
1473  }
1474 
1475  void
1476  _M_incr()
1477  {
1478  __node_iter_base::_M_incr();
1479  if (this->_M_cur)
1480  {
1481  std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur,
1482  _M_bucket_count);
1483  if (__bkt != _M_bucket)
1484  this->_M_cur = nullptr;
1485  }
1486  }
1487 
1488  std::size_t _M_bucket;
1489  std::size_t _M_bucket_count;
1490 
1491  void
1492  _M_init(const __hash_code_base& __base)
1493  { ::new(this->_M_h()) __hash_code_base(__base); }
1494 
1495  void
1496  _M_destroy() { this->_M_h()->~__hash_code_base(); }
1497 
1498  public:
1499  std::size_t
1500  _M_get_bucket() const { return _M_bucket; } // for debug mode
1501  };
1502 
1503  /// local iterators
1504  template<typename _Key, typename _Value, typename _ExtractKey,
1505  typename _Hash, typename _RangeHash, typename _Unused,
1506  bool __constant_iterators, bool __cache>
1507  struct _Local_iterator
1508  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1509  _Hash, _RangeHash, _Unused, __cache>
1510  {
1511  private:
1512  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1513  _Hash, _RangeHash, _Unused, __cache>;
1514  using __hash_code_base = typename __base_type::__hash_code_base;
1515 
1516  public:
1517  using value_type = _Value;
1518  using pointer = __conditional_t<__constant_iterators,
1519  const value_type*, value_type*>;
1520  using reference = __conditional_t<__constant_iterators,
1521  const value_type&, value_type&>;
1522  using difference_type = ptrdiff_t;
1523  using iterator_category = forward_iterator_tag;
1524 
1525  _Local_iterator() = default;
1526 
1527  _Local_iterator(const __hash_code_base& __base,
1528  _Hash_node<_Value, __cache>* __n,
1529  std::size_t __bkt, std::size_t __bkt_count)
1530  : __base_type(__base, __n, __bkt, __bkt_count)
1531  { }
1532 
1533  reference
1534  operator*() const
1535  { return this->_M_cur->_M_v(); }
1536 
1537  pointer
1538  operator->() const
1539  { return this->_M_cur->_M_valptr(); }
1540 
1541  _Local_iterator&
1542  operator++()
1543  {
1544  this->_M_incr();
1545  return *this;
1546  }
1547 
1548  _Local_iterator
1549  operator++(int)
1550  {
1551  _Local_iterator __tmp(*this);
1552  this->_M_incr();
1553  return __tmp;
1554  }
1555  };
1556 
1557  /// local const_iterators
1558  template<typename _Key, typename _Value, typename _ExtractKey,
1559  typename _Hash, typename _RangeHash, typename _Unused,
1560  bool __constant_iterators, bool __cache>
1561  struct _Local_const_iterator
1562  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1563  _Hash, _RangeHash, _Unused, __cache>
1564  {
1565  private:
1566  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1567  _Hash, _RangeHash, _Unused, __cache>;
1568  using __hash_code_base = typename __base_type::__hash_code_base;
1569 
1570  public:
1571  typedef _Value value_type;
1572  typedef const value_type* pointer;
1573  typedef const value_type& reference;
1574  typedef std::ptrdiff_t difference_type;
1575  typedef std::forward_iterator_tag iterator_category;
1576 
1577  _Local_const_iterator() = default;
1578 
1579  _Local_const_iterator(const __hash_code_base& __base,
1580  _Hash_node<_Value, __cache>* __n,
1581  std::size_t __bkt, std::size_t __bkt_count)
1582  : __base_type(__base, __n, __bkt, __bkt_count)
1583  { }
1584 
1585  _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1586  _Hash, _RangeHash, _Unused,
1587  __constant_iterators,
1588  __cache>& __x)
1589  : __base_type(__x)
1590  { }
1591 
1592  reference
1593  operator*() const
1594  { return this->_M_cur->_M_v(); }
1595 
1596  pointer
1597  operator->() const
1598  { return this->_M_cur->_M_valptr(); }
1599 
1600  _Local_const_iterator&
1601  operator++()
1602  {
1603  this->_M_incr();
1604  return *this;
1605  }
1606 
1607  _Local_const_iterator
1608  operator++(int)
1609  {
1610  _Local_const_iterator __tmp(*this);
1611  this->_M_incr();
1612  return __tmp;
1613  }
1614  };
1615 
1616  /**
1617  * Primary class template _Hashtable_base.
1618  *
1619  * Helper class adding management of _Equal functor to
1620  * _Hash_code_base type.
1621  *
1622  * Base class templates are:
1623  * - __detail::_Hash_code_base
1624  * - __detail::_Hashtable_ebo_helper
1625  */
1626  template<typename _Key, typename _Value, typename _ExtractKey,
1627  typename _Equal, typename _Hash, typename _RangeHash,
1628  typename _Unused, typename _Traits>
1629  struct _Hashtable_base
1630  : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash,
1631  _Unused, _Traits::__hash_cached::value>,
1632  private _Hashtable_ebo_helper<0, _Equal>
1633  {
1634  public:
1635  typedef _Key key_type;
1636  typedef _Value value_type;
1637  typedef _Equal key_equal;
1638  typedef std::size_t size_type;
1639  typedef std::ptrdiff_t difference_type;
1640 
1641  using __traits_type = _Traits;
1642  using __hash_cached = typename __traits_type::__hash_cached;
1643 
1644  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1645  _Hash, _RangeHash, _Unused,
1646  __hash_cached::value>;
1647 
1648  using __hash_code = typename __hash_code_base::__hash_code;
1649 
1650  private:
1651  using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1652 
1653  static bool
1654  _S_equals(__hash_code, const _Hash_node_code_cache<false>&)
1655  { return true; }
1656 
1657  static bool
1658  _S_node_equals(const _Hash_node_code_cache<false>&,
1659  const _Hash_node_code_cache<false>&)
1660  { return true; }
1661 
1662  static bool
1663  _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n)
1664  { return __c == __n._M_hash_code; }
1665 
1666  static bool
1667  _S_node_equals(const _Hash_node_code_cache<true>& __lhn,
1668  const _Hash_node_code_cache<true>& __rhn)
1669  { return __lhn._M_hash_code == __rhn._M_hash_code; }
1670 
1671  protected:
1672  _Hashtable_base() = default;
1673 
1674  _Hashtable_base(const _Hash& __hash, const _Equal& __eq)
1675  : __hash_code_base(__hash), _EqualEBO(__eq)
1676  { }
1677 
1678  bool
1679  _M_key_equals(const _Key& __k,
1680  const _Hash_node_value<_Value,
1681  __hash_cached::value>& __n) const
1682  {
1683  static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
1684  "key equality predicate must be invocable with two arguments of "
1685  "key type");
1686  return _M_eq()(__k, _ExtractKey{}(__n._M_v()));
1687  }
1688 
1689  template<typename _Kt>
1690  bool
1691  _M_key_equals_tr(const _Kt& __k,
1692  const _Hash_node_value<_Value,
1693  __hash_cached::value>& __n) const
1694  {
1695  static_assert(
1696  __is_invocable<const _Equal&, const _Kt&, const _Key&>{},
1697  "key equality predicate must be invocable with two arguments of "
1698  "key type");
1699  return _M_eq()(__k, _ExtractKey{}(__n._M_v()));
1700  }
1701 
1702  bool
1703  _M_equals(const _Key& __k, __hash_code __c,
1704  const _Hash_node_value<_Value, __hash_cached::value>& __n) const
1705  { return _S_equals(__c, __n) && _M_key_equals(__k, __n); }
1706 
1707  template<typename _Kt>
1708  bool
1709  _M_equals_tr(const _Kt& __k, __hash_code __c,
1710  const _Hash_node_value<_Value,
1711  __hash_cached::value>& __n) const
1712  { return _S_equals(__c, __n) && _M_key_equals_tr(__k, __n); }
1713 
1714  bool
1715  _M_node_equals(
1716  const _Hash_node_value<_Value, __hash_cached::value>& __lhn,
1717  const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const
1718  {
1719  return _S_node_equals(__lhn, __rhn)
1720  && _M_key_equals(_ExtractKey{}(__lhn._M_v()), __rhn);
1721  }
1722 
1723  void
1724  _M_swap(_Hashtable_base& __x)
1725  {
1726  __hash_code_base::_M_swap(__x);
1727  std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get());
1728  }
1729 
1730  const _Equal&
1731  _M_eq() const { return _EqualEBO::_M_cget(); }
1732  };
1733 
1734  /**
1735  * Primary class template _Equality.
1736  *
1737  * This is for implementing equality comparison for unordered
1738  * containers, per N3068, by John Lakos and Pablo Halpern.
1739  * Algorithmically, we follow closely the reference implementations
1740  * therein.
1741  */
1742  template<typename _Key, typename _Value, typename _Alloc,
1743  typename _ExtractKey, typename _Equal,
1744  typename _Hash, typename _RangeHash, typename _Unused,
1745  typename _RehashPolicy, typename _Traits,
1746  bool _Unique_keys = _Traits::__unique_keys::value>
1747  struct _Equality;
1748 
1749  /// unordered_map and unordered_set specializations.
1750  template<typename _Key, typename _Value, typename _Alloc,
1751  typename _ExtractKey, typename _Equal,
1752  typename _Hash, typename _RangeHash, typename _Unused,
1753  typename _RehashPolicy, typename _Traits>
1754  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1755  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>
1756  {
1757  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1758  _Hash, _RangeHash, _Unused,
1759  _RehashPolicy, _Traits>;
1760 
1761  bool
1762  _M_equal(const __hashtable&) const;
1763  };
1764 
1765  template<typename _Key, typename _Value, typename _Alloc,
1766  typename _ExtractKey, typename _Equal,
1767  typename _Hash, typename _RangeHash, typename _Unused,
1768  typename _RehashPolicy, typename _Traits>
1769  bool
1770  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1771  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
1772  _M_equal(const __hashtable& __other) const
1773  {
1774  using __node_type = typename __hashtable::__node_type;
1775  const __hashtable* __this = static_cast<const __hashtable*>(this);
1776  if (__this->size() != __other.size())
1777  return false;
1778 
1779  for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1780  {
1781  std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur);
1782  auto __prev_n = __other._M_buckets[__ybkt];
1783  if (!__prev_n)
1784  return false;
1785 
1786  for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);;
1787  __n = __n->_M_next())
1788  {
1789  if (__n->_M_v() == *__itx)
1790  break;
1791 
1792  if (!__n->_M_nxt
1793  || __other._M_bucket_index(*__n->_M_next()) != __ybkt)
1794  return false;
1795  }
1796  }
1797 
1798  return true;
1799  }
1800 
1801  /// unordered_multiset and unordered_multimap specializations.
1802  template<typename _Key, typename _Value, typename _Alloc,
1803  typename _ExtractKey, typename _Equal,
1804  typename _Hash, typename _RangeHash, typename _Unused,
1805  typename _RehashPolicy, typename _Traits>
1806  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1807  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
1808  {
1809  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1810  _Hash, _RangeHash, _Unused,
1811  _RehashPolicy, _Traits>;
1812 
1813  bool
1814  _M_equal(const __hashtable&) const;
1815  };
1816 
1817  template<typename _Key, typename _Value, typename _Alloc,
1818  typename _ExtractKey, typename _Equal,
1819  typename _Hash, typename _RangeHash, typename _Unused,
1820  typename _RehashPolicy, typename _Traits>
1821  bool
1822  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1823  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>::
1824  _M_equal(const __hashtable& __other) const
1825  {
1826  using __node_type = typename __hashtable::__node_type;
1827  const __hashtable* __this = static_cast<const __hashtable*>(this);
1828  if (__this->size() != __other.size())
1829  return false;
1830 
1831  for (auto __itx = __this->begin(); __itx != __this->end();)
1832  {
1833  std::size_t __x_count = 1;
1834  auto __itx_end = __itx;
1835  for (++__itx_end; __itx_end != __this->end()
1836  && __this->key_eq()(_ExtractKey{}(*__itx),
1837  _ExtractKey{}(*__itx_end));
1838  ++__itx_end)
1839  ++__x_count;
1840 
1841  std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur);
1842  auto __y_prev_n = __other._M_buckets[__ybkt];
1843  if (!__y_prev_n)
1844  return false;
1845 
1846  __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt);
1847  for (;;)
1848  {
1849  if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()),
1850  _ExtractKey{}(*__itx)))
1851  break;
1852 
1853  auto __y_ref_n = __y_n;
1854  for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next())
1855  if (!__other._M_node_equals(*__y_ref_n, *__y_n))
1856  break;
1857 
1858  if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt)
1859  return false;
1860  }
1861 
1862  typename __hashtable::const_iterator __ity(__y_n);
1863  for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end)
1864  if (--__x_count == 0)
1865  break;
1866 
1867  if (__x_count != 0)
1868  return false;
1869 
1870  if (!std::is_permutation(__itx, __itx_end, __ity))
1871  return false;
1872 
1873  __itx = __itx_end;
1874  }
1875  return true;
1876  }
1877 
1878  /**
1879  * This type deals with all allocation and keeps an allocator instance
1880  * through inheritance to benefit from EBO when possible.
1881  */
1882  template<typename _NodeAlloc>
1883  struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
1884  {
1885  private:
1886  using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
1887 
1888  template<typename>
1889  struct __get_value_type;
1890  template<typename _Val, bool _Cache_hash_code>
1891  struct __get_value_type<_Hash_node<_Val, _Cache_hash_code>>
1892  { using type = _Val; };
1893 
1894  public:
1895  using __node_type = typename _NodeAlloc::value_type;
1896  using __node_alloc_type = _NodeAlloc;
1897  // Use __gnu_cxx to benefit from _S_always_equal and al.
1898  using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
1899 
1900  using __value_alloc_traits = typename __node_alloc_traits::template
1901  rebind_traits<typename __get_value_type<__node_type>::type>;
1902 
1903  using __node_ptr = __node_type*;
1904  using __node_base = _Hash_node_base;
1905  using __node_base_ptr = __node_base*;
1906  using __buckets_alloc_type =
1907  __alloc_rebind<__node_alloc_type, __node_base_ptr>;
1908  using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>;
1909  using __buckets_ptr = __node_base_ptr*;
1910 
1911  _Hashtable_alloc() = default;
1912  _Hashtable_alloc(const _Hashtable_alloc&) = default;
1913  _Hashtable_alloc(_Hashtable_alloc&&) = default;
1914 
1915  template<typename _Alloc>
1916  _Hashtable_alloc(_Alloc&& __a)
1917  : __ebo_node_alloc(std::forward<_Alloc>(__a))
1918  { }
1919 
1920  __node_alloc_type&
1921  _M_node_allocator()
1922  { return __ebo_node_alloc::_M_get(); }
1923 
1924  const __node_alloc_type&
1925  _M_node_allocator() const
1926  { return __ebo_node_alloc::_M_cget(); }
1927 
1928  // Allocate a node and construct an element within it.
1929  template<typename... _Args>
1930  __node_ptr
1931  _M_allocate_node(_Args&&... __args);
1932 
1933  // Destroy the element within a node and deallocate the node.
1934  void
1935  _M_deallocate_node(__node_ptr __n);
1936 
1937  // Deallocate a node.
1938  void
1939  _M_deallocate_node_ptr(__node_ptr __n);
1940 
1941  // Deallocate the linked list of nodes pointed to by __n.
1942  // The elements within the nodes are destroyed.
1943  void
1944  _M_deallocate_nodes(__node_ptr __n);
1945 
1946  __buckets_ptr
1947  _M_allocate_buckets(std::size_t __bkt_count);
1948 
1949  void
1950  _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count);
1951  };
1952 
1953  // Definitions of class template _Hashtable_alloc's out-of-line member
1954  // functions.
1955  template<typename _NodeAlloc>
1956  template<typename... _Args>
1957  auto
1958  _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
1959  -> __node_ptr
1960  {
1961  auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
1962  __node_ptr __n = std::__to_address(__nptr);
1963  __try
1964  {
1965  ::new ((void*)__n) __node_type;
1966  __node_alloc_traits::construct(_M_node_allocator(),
1967  __n->_M_valptr(),
1968  std::forward<_Args>(__args)...);
1969  return __n;
1970  }
1971  __catch(...)
1972  {
1973  __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
1974  __throw_exception_again;
1975  }
1976  }
1977 
1978  template<typename _NodeAlloc>
1979  void
1980  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n)
1981  {
1982  __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
1983  _M_deallocate_node_ptr(__n);
1984  }
1985 
1986  template<typename _NodeAlloc>
1987  void
1988  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n)
1989  {
1990  typedef typename __node_alloc_traits::pointer _Ptr;
1991  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
1992  __n->~__node_type();
1993  __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
1994  }
1995 
1996  template<typename _NodeAlloc>
1997  void
1998  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n)
1999  {
2000  while (__n)
2001  {
2002  __node_ptr __tmp = __n;
2003  __n = __n->_M_next();
2004  _M_deallocate_node(__tmp);
2005  }
2006  }
2007 
2008  template<typename _NodeAlloc>
2009  auto
2010  _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count)
2011  -> __buckets_ptr
2012  {
2013  __buckets_alloc_type __alloc(_M_node_allocator());
2014 
2015  auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count);
2016  __buckets_ptr __p = std::__to_address(__ptr);
2017  __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr));
2018  return __p;
2019  }
2020 
2021  template<typename _NodeAlloc>
2022  void
2023  _Hashtable_alloc<_NodeAlloc>::
2024  _M_deallocate_buckets(__buckets_ptr __bkts,
2025  std::size_t __bkt_count)
2026  {
2027  typedef typename __buckets_alloc_traits::pointer _Ptr;
2028  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2029  __buckets_alloc_type __alloc(_M_node_allocator());
2030  __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count);
2031  }
2032 
2033  ///@} hashtable-detail
2034 } // namespace __detail
2035 /// @endcond
2036 _GLIBCXX_END_NAMESPACE_VERSION
2037 } // namespace std
2038 
2039 #endif // _HASHTABLE_POLICY_H
constexpr complex< _Tp > operator*(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x times y.
Definition: complex:392
constexpr piecewise_construct_t piecewise_construct
Tag for piecewise construction of std::pair objects.
Definition: stl_pair.h:83
constexpr _Tp && forward(typename std::remove_reference< _Tp >::type &__t) noexcept
Forward an lvalue.
Definition: move.h:77
Definition: simd.h:284
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:104
constexpr _Iterator __base(_Iterator __it)
Define a member typedef type only if a boolean constant is true.
Definition: type_traits:2228
is_constructible
Definition: type_traits:977
ISO C++ entities toplevel namespace is std.
constexpr iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:82
Uniform interface to all pointer-like types.
Definition: ptr_traits.h:194
constexpr tuple< _Elements &&... > forward_as_tuple(_Elements &&... __args) noexcept
std::forward_as_tuple
Definition: tuple:1589
__numeric_traits_integer< _Tp > __int_traits
Convenience alias for __numeric_traits<integer-type>.
is_empty
Definition: type_traits:780
Uniform interface to all allocator types.
constexpr iterator_traits< _Iter >::iterator_category __iterator_category(const _Iter &)
Primary class template, tuple.
Definition: tuple:57
Marking input iterators.
Struct holding two objects of arbitrary type.
integral_constant< bool, false > false_type
The type used as a compile-time boolean with false value.
Definition: type_traits:85
Forward iterators support a superset of input iterator operations.
Traits class for iterators.
Uniform interface to C++98 and C++11 allocators.